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What is a matching?

Definition
A matching is a set S of vertex disjoint edges in G .



What is a matching?

A

B

C

X

Y

Z



What is a matching?

A

B

C

X

Y

Z



What is a matching?

Definition
A perfect matching is a matching that covers all the vertices of G .
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The Stable Matching Problem



The Stable Matching Problem

Definition
A perfect matching M in a complete bipartite graph Kn,n is stable
if there are no two vertices u ∈ X , v ∈ Y such that u prefers v
over its current partner, v prefers u over its current partner, and
uv /∈ M.
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A: {x , y , z} B: {y , z , x} C : {y , z , x}
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X Y Z

X : {c , b, a} Y : {c, b, a} Z : {b, a, c}
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Some Questions

1. When can we find a stable matching?

2. What types of stable matchings can we find?

3. How are different stable matchings related?
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The Gale-Shapley Algorithm

1. All leads ask their preferred follower to dance. All followers
who are asked accept the offer of their preferred person.

2. All leads who were not matched ask their second favorites.
Again, followers accept the offer of their preferred person
(possibly upgrading a previous matching).

3. Leads continue asking followers until every lead is either
matched, or has exhausted his/her options.
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The Gale-Shapley Algorithm
Example:
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The Gale-Shapley Algorithm
Example:
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The Gale-Shapley Algorithm
Proof of correctness:

1. The matching is perfect (everyone pairs up):

a. Suppose there is an unmatched lead and follower when the
algorithm ends. Then the lead must have proposed to every
follower and been rejected (either immediately or through some
later upgrade). This means that the unmatched follower must
have received a proposition. But once a follower receives a
proposition, he she or he will always be paired. Therefore, an
unmatched pair is impossible.

2. No pairs are unstable:

a. Suppose some matching of a lead l and follower f is unstable.
Then l must prefer some other follower f ′, and f ′ must also
prefer l over their current partner l ′. If this is case, l must have
asked f ′ before f . But followers can only reject a proposal if they
then accept the proposal of someone else they prefer. This
means that f ′ must in fact prefer l ′ over l . This is a
contradiction. We conclude all matches are stable.
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Properties of Stable Matchings
Observations

1. The Gale-Shapley algorithm provides a matching that gives
the leads their top preferences.

2. By symmetry, allowing the followers to propose first gives
them their top preferences.

3. Are there other intermediate matchings not produced by the
GS algorithm? How are all solutions to a stable matching
problem related?
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Properties of Stable Matchings

A: {y , x , z} B: {z , y , x} C : {x , z , y}

A B C

X Y Z

X : {b, a, c} Y : {c, b, a} Z : {a, c , b}

{AY, BZ, CX} {AX, BY, CZ} {AX, BX, CY}



Properties of Stable Matchings
Partial ordering

For stable matchings M,N ∈ S , M ≤ N if and only if every lead
prefers matching N to matching M. E.g. In the previous example,
RED ≥ BLUE ≥ GREEN.

1. Reflexivity (M ≤ M)

2. Anti-symmetry (M ≤ N and N ≤ M are not both true)

3. Transitivity (if M ≤ N and N ≤ L, then M ≤ L)
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Properties of Stable Matchings
Partial ordering

RED = {AY, BZ, CX} = {1, 1, 1}

BLUE = {AX, BY, CZ} = {2, 2, 2}

GREEN = {AZ, BX, CY} = {3, 3, 3}



Properties of Stable Matchings
Lattice

We define two more operations on stable matchings: ∧ and ∨:

1. For N,M ∈ S , let N ∧M define the matching where each lead
is given their lowest preference follower of those they are
assigned in M and N.

2. For N,M ∈ S , let N ∨M define the matching where each lead
is given their highest preference follower of those they are
assigned in M and N.

3. In the case of matchings, ∧ and ∨ are distributive. I.e.
N ∧ (M ∨ L) = (N ∧M) ∨ (N ∧ L) and
N ∨ (M ∧ L) = (N ∨M) ∧ (N ∨ L).
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Properties of Stable Matchings
Lattice

w ∨ x = {1, 1, 1, 1}

w ∧ x = y ∨ z = {2, 2, 2, 2}

y ∧ z = {3, 3, 3, 3}

w = {1, 1, 2, 2} x = {2, 2, 1, 1}

y = {3, 2, 2, 3} z = {2, 3, 3, 2}



Properties of Stable Matchings
Distributed lattice

max = {}

min = {}
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max = {1}

x = {1}

min = {1}



Properties of Stable Matchings
Lattice

max = {1, 1}

min = {2, 2}

x ∨ y = {1, 1}

x ∧ y = {2, 2}

x = {1, 2} y = {2, 1}



Properties of Stable Matchings
Distributive lattice
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Dedekind numbers

2
3
6

20
168

7,581
7,828,354

2,414,682,040,998
56,130,437,228,687,557,907,788

???



Thanks!
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