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1 Organization

The goal of this lesson is to build up an intuitive understanding of Pick’s
Theorem and explore potential variations on Pick’s original formula. Pick’s
Theorem states that the area A of any polygon drawn on a square lattice can
be described as a simple function of of the number of dots P on the polygon’s
perimeter and the number of dots I contained within the polygon, such that

A = I +
1

2
P − 1 (1)

Each section of this lesson will provide sequential tasks that drive at the
derivation of this equation, and provide some simple leading questions to
guide students/teachers/whomever in this direction. It will also include ex-
planations of the relevant mathematics, and interesting additional directions
and/or problems to tackle.

2 Lesson

2.1 Task

Suppose you have a board with pegs hammered into it in a square lattice and
a rubber band to place around these pegs. How might you easily calculate
the area contained within the rubber band? What techniques might you use?
Calculate the areas of different shapes (e.g. a rectangle, various triangles,
some sort of wonky polygon, etc.) without measuring. What did you do?
What worked well? What didn’t work well?
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2.2 Explanation

Possible techniques for calculating areas might include: dividing irregular
polygons into a number of triangles with easily determinable areas; cutting
and pasting, as it were, pieces of the original shape to form one that is easier
to deal with; deforming the polygon without changing the area.

2.3 Task

You have been trying to find the area of various shapes on your peg board.
You probably noticed that some shapes were easier to work with than others.
In particular, triangles and rectangles were especially simple. Why? Ideally,
you would break a shape down into lots of little squares and then just add
them all up to find the area. Unfortunately, only the simplest shapes actually
allow us to do this. Is there any shape that your polygon can be subdivided
into?

Now that you’ve managed to subdivide your polygon, you might want to
just add up all of the little shapes. Do they all have the same area? Is there
a way to ensure that they do have the same area?

2.4 Explanation

You can divide any n-sided polygon into n− 2 of triangles. An intuition for
why this is true can be developed by connecting vertices to form triangles.
Each of these triangles can then be subdivided into smaller triangles by
connecting edge and interior dots, until all triangles have no edge and no
interior dots. These small triangles all have an area of 1

2
. An explanation is

given below. We show:

P = 3 and I = 0 =⇒ A =
1

2
(2)

A =
1

2
=⇒ P = 3 and I = 0 (3)

(2) The idea here is to progressively reduce the size and complexity of
the triangle while maintaining the same base and height (and therefore area).
Suppose the triangle starts on points A = (0, 0), B = (u, v) and C = (x, y).
Suppose AB is the shortest side. Let AB be the base. Now, as long as
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we shift C along a line parallel to AB, the height of the triangle will remain
constant. Therefore, we shift C to a new point D = (x−u, y−v). This leaves
both AB and CD with slopes of v

u
, thus preserving the height. We continue

this procedure, now selecting the smallest side of 4ABD to be the base.
Each successive iteration will necessarily shorten the sides of the triangle, so
eventually we must arrive at the smallest possible triangle, located at points
X = (a, b), Y = (a + 1, b) and Z = (a, b + 1). This clearly has area A = 1

2
.

Note, if this were not a special triangle, then it would be possible for two or
three points to overlap.

(3) Assume there exists a triangle with area A = 1
2

that contains a dot
in its perimeter or interior. Then that dot can be used to create multiple
sub-triangles with P = 3 and I = 0. But we know that these triangles have
an area of 1

2
. Since they are strictly smaller than our original triangle, our

original assumption must have been false.

2.5 Task

How can you use what you have discovered about subdividing your polygon
to help find its area? Can you find an expression for its area in terms of the
number of little triangles? How do you know how many little triangles there
are? What does the number of dots inside the polygon and on its perimeter
tell you about the number of triangles?

2.6 Explanation

One way we can derive Pick’s Theorem is by solving two equations for the
total sum of angles S in a given polygon X. First, suppose P has some area
a. Then the number of special triangles is 2a, and so the sum is

S = 2a× 180 (4)

= 360a (5)

Now, we will find S a slightly different way. We know that all dots I
inside of X contribute 360 degrees. Similarly, all edge dots E contribute 180
degrees. A polygon with n sides has a total degree of (n − 2) × 180, so all
vertex dots V contribute a total of (V − 2) × 180 degrees. Together, this
leaves us with
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S = 360× I + 180× E + (V − 2)× 180 (6)

Setting these two equations equal and solving for a:

360a = 360× I + 180× E + (V − 2)× 180 (7)

a = I +
1

2
(E + V )− 1 (8)

Finally, if we let P = E + V , we are left with

A = I +
1

2
P − 1 (9)

3 Further Problems

Suppose there are holes in a polygon. Is there any easy way to calculate its
area without just subtracting the area of the hole from the total area?

What about higher dimensions? Is there an equivalent formula for 3D?
What about 4D?

Pick’s Theorem focuses on polygons whose vertices are placed on dots.
What if we remove this constraint and look at how many dots a regular
polygon can contain? What is the maximum number of dots that a regular
polygon with k sides of length n can hold? Does this number depend on n
and k?
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