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Abstract

We introduce the notion of list colorings and the list chromatic number χl(G). We provide some
general properties of χl(G), and then explore its value in planar and bipartite graphs. We look at a
characterization by Rubin et al. of graphs with list chromatic number ≤ 2. Finally, we briefly explore
the related notion of list edge chromatic number, and present the list coloring conjecture and related
results.

1 Introduction

Coloring is a very common process in graph theory. Typical examples of colorings on graphs G include
vertex coloring and the chromatic number χ(G), and edge coloring and the edge chromatic number χ′(G).
In this paper, we explore a third type of coloring, called list coloring.

Definition 1.1. For a graph G, a list coloring of G is a proper coloring of the vertices of G from color
lists L(v) available at each vertex. In formal terms, let A be a set of colors, and let L(v) be some subset of
A assigned to vertex v. A list coloring is a function f from L(v) to v such that f(v) 6= f(u) for any two
adjacent vertices u, v.

As is the case with other colorings, we would like to know the minimum list coloring for a given graph. We
call a graph k-choosable if there exists a proper coloring for any list of k colors assigned to each vertex. This
gives us the following definition:

Definition 1.2. The list chromatic number (or choice number) of a graph G, denoted χl(G), is the minimum
k for which G is k-choosable.

Consider the following example on a K4,2:

{1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}

{1, 2, 3} {1, 2, 3}

1 1 1 1

3 3

Clearly, this particular list assignment allows us to properly color K4,2. However, we would like to know if
this holds for any lists of size 3. Note that because we have 3 colors available, no matter what we color the
bottom two vertices, we will always have at least 1 additional color for the top four. Therefore, χl(K4,2) ≤ 3.
Is this the best we can do? Consider the following assignment of lists of size 2:
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{1, 3} {1, 4} {2, 3} {2, 4}

{1, 2} {3, 4}

Clearly, it is not possible to properly color this graph. No matter which two colors we select for the
bottom two vertices, there exists a top vertex that must be colored using one of these two colors. Therefore,
we have that χl(K4,2) = 3. This is perhaps somewhat surprising, since χ(K4,2) = 2. One might wonder,
then, what the relation is between χ(G) and χl(G). We will consider this question in the following section.

Other questions of interest include:

• What is χl(G) for different classes of graphs? Bipartite graphs, planar graphs?

• What types of graphs have list chromatic number ≤ 2?

• What about list-edge-coloring? What are some properties of the list-edge-coloring number χ′l(G)?

2 Characterizations of χl(G)

Motivated by the earlier example, we would like to determine the relationship of χl(G) to χ(G). We make
the following claim:

Proposition 2.1. χl(G) ≥ χ(G).

Proof: Suppose χ(G) = k. Let L(v) = {1, 2, ..., k} for all v ∈ V (G). These lists admit a proper k-coloring
of G. Furthermore, if L(v) = {1, 2, ..., k − 1} for all v ∈ V (G), then G clearly cannot be properly colored.
Therefore, χl(G) ≥ χ(G).

We present three further properties of χl(G), courtesy of Erdos et al. [1], Thomassen [2], and Alon et al.
[3], respectively:

1. χl(G) ≤ ∆(G) + 1.

2. χl(G) ≤ 5 for planar G.

3. χl(G) ≤ 3 for bipartite planar G.

To gain an intuition for (1), note that no matter what colors are assigned to a given vertex, it will always
be possible to properly color that vertex and all its neighbors, even if all its neighbors are connected.

We will explore (2) and (3) in the following sections.

3 Graph classes

3.1 Bipartite graphs

Since bipartite graphs provide a strict bound on χ(G) (namely, χ(G) = 2), it is natural to ask whether a
similar statement holds for χl(G). Unfortunately, we shall find that this is simply not the case. In our earlier
example, we observed that χl(K4,2) = 3 by providing a vertex list assignment of size 2 for which K4,2 was
not properly colorable. We now generalize this technique across all complete bipartite graphs Knn,n.

Proposition 3.1. For complete bipartite graphs G of the form Knn,n, χl(G) ≥ n+ 1.

2



Proof: Let G = (X,Y ), where |X| = nn and |Y | = n. We provide a vertex list assignment of size n such
that G is not properly colorable. For ui ∈ Y , let L(ui) = {i1, i2, ..., in}. For vi ∈ X, let L(vi) be one of the
nn possible sets made from taking one color from each L(ui). Then, no matter what colors we select for the
vertices of Y , there will necessarily be some vertex v ∈ X such that L(v) is exactly the colors of the vertices
in Y .

A similar idea gives us the following theorem, due to Erdos et al. [1]:

Theorem 3.2. For all complete bipartite graphs G of the form Kn,n, where n =
(
2k−1

k

)
, χl(G) > k.

Proof: We show that G = (X,Y ) cannot be properly colored using lists of size k. Let there be 2k − 1
available colors (i.e. |A| = 2k − 1). Consider the n unique subsets of A of size k. To each vertex in X and
Y , assign one such unique subset. We have two scenarios:

1. We see that in our coloring of X, we must use at least k colors. Otherwise, the selected colors would be
disjoint from the list of colors available to one vertex in X, meaning that vertex would be uncolorable.

2. However, if we use k colors for the vertices of X, then there will be some vertex in Y whose list includes
exactly those k colors.

No matter what we do, we see that a k-coloring is not possible. We therefore conclude that G is not
k-choosable.

We present one final characterization of χl(G) for bipartite G, due to Alon et al. [3]:

Theorem 3.3. Let L(G) = max(|E(H)|/|V (H)|) for all subgraphs H of G. Then every bipartite graph G
is (dL(G)e+ 1)-choosable.

For a detailed proof of this result, we direct the reader to the original paper by Alon et al. [3].

3.2 Planar graphs

As we alluded to earlier, Thomassen [2] discovered a nice upper bound for the list chromatic number of
planar graphs. Namely:

Theorem 3.4. For planar G, χl(G) ≤ 5.

Proof: Suppose G is maximally planar (i.e. all bounded faces are triangles, and the outer face is a cycle C).
We show that if G has two adjacent external vertices with different lists of size 1, all other external vertices
have lists of size 3, and all internal vertices have lists of size 5, then G can be properly colored. (Note that
this claim is stronger than the theorem.) Since adding edges to a graph cannot reduce its list chromatic
number, it is sufficient to prove this claim for maximal G. We perform induction on n(G):

Base case: If n = 3, then G is a triangle. Let V (G) = {v1, v2, v3}, and L(v1) = {1} and L(v2) = {2}.
Then, since |L(v3)| = 3, there exists a color for v3 that is different from v1 and v2.

Induction step: We consider graphs on > 3 vertices. Let C = v1v2v3...vpv1 be the external cycle of G.
Suppose that v1 and vp have different color lists both of size 1. We consider two cases:

1. Suppose G has a chord between vertices vi and vj in C. We consider the two smaller cycles C ′ =
v1v2...vivj ...vpv1 and C ′′ = vivi+1...vjvi. We first apply our induction hypothesis to C ′ and its interior.
This provides a proper coloring where vi, vj are adjacent and differently colored. We then apply our
induction hypothesis to C ′′ and its interior. The resulting colorings give us a list coloring of G.

2. Suppose G does not have a chord. Let {v1, u1, ..., um, v3} be the neighborhood of v2. Since G is
maximally planar, v1u1...umv3 must form a path from v1 to vm. Furthermore, since G is chordless,
{u1, ..., um} are all internal vertices of G. We consider the graph G′ = G− v2.

Let v1 be colored with color c. Since |L(v2)| = 3, there exist two colors x, y ∈ |L(v2)| such that x 6= c
and y 6= c. For all ui ∈ {u1, ..., um}, let L′(ui) = L(ui) \ {x, y}. This is possible since all such vertices
are internal and therefore have lists of size 5. Therefore, |L′(ui)| ≥ 3. We now apply the induction
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hypothesis to G′. This provides a proper coloring for all vertices of G except v2. However, since v3 is
the only neighbor of v2 that can be colored one of x or y, we simply color v3 whichever of these colors
is not assigned to v2.

Additionally, a result from Alon et al. [3] shows that if G is both planar and bipartite, then this upper
bound is even tighter:

Theorem 3.5. For bipartite planar G, χl(G) ≤ 3.

Proof: This follows almost directly from theorem 3.3. We observe that if G is bipartite and planar, then
L(G) ≤ 2. This is because any simple bipartite planar graph on n vertices can have at most 2n − 4 edges.
Therefore, G is (2 + 1) = 3-choosable.

4 What if χl(G) ≤ 2?

In this section, we will attempt to characterize all graphs that are at most 2-choosable. Most of the results
in the section are due to a 1979 paper by Paul Erdős, Arthur Rubin, and Herbert Taylor [1].

We begin by observing that any vertices of degree 1 can be added to a 2-choosable graph without changing
its list chromatic number. We therefore only consider those graphs with minimum degree ≥ 2. Let the core
of a graph G be the graph resulting from the deletion of all degree 1 vertices from G. We define the following
class of graphs:

Definition 4.1. We call a graph G a Θ-graph if G consists of two vertices u and v with three vertex-disjoint
paths between them.

Note that a given Θ-graph can be characterized by the lengths of these three paths. For example, a C4

with a chord is the Θ-graph given by Θ2,2,1.
We then have the following characterization of 2-choosable graphs:

Theorem 4.1. Let T = {K1, C2m+2,Θ2,2,2m : m ≥ 1}. Then G is 2-choosable if and only if the core of G
is in T .

A detailed examination of this theorem can be found in [1]. In this paper, we will simply provide a proof of
the 2-choosability of the elements of T . Consider Θ2,2,2m. Let the vertices on paths of length 2 between u
and v be A and B. We consider two cases:

1. Suppose that all 2m vertices from u to v are assigned the same color lists {x, y}. Then we may color
these vertices by alternating between x and y. Since there are 2m such vertices, c(u) = c(v) = x. Color
the remaining two disjoint vertices A, B between u and v with y.

2. Suppose that the 2m vertices from u to v are assigned different color lists. Select two adjacent such
vertices vi, vj . Proceed towards v, properly coloring vertices along this path as you go. Suppose that
you color v with some color x. Now consider L(u) = {a, b}. If {A,B} 6= {{x, a}, {x, b}}, then color A
and B with a and b, respectively, and continue along until you arrive back at vi, thereby completing a
proper coloring. If, however, {A,B} = {{x, a}, {x, b}}, return back to vi, vj , and repeat the algorithm,
this time heading in the direction of u. Since we know c(u) 6= x, we can color A and B with x, and
then proceed happily along back to vj , thereby completing a proper coloring.

Note that since Θ2,2,2m is 2-choosable, and C2m+2 is a subgraph of Θ2,2,2m, C2m+2 must also be 2-
choosable.

5 List-edge-coloring

We examine a natural extension of the list-chromatic number of a graph: the list-edge-chromatic number
χ′l(G).
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Definition 5.1. A list-edge-coloring of a graph G is a proper coloring of the edges of G from color lists L(e)
available at each edge. A graph is k-edge-choosable if there exists a proper coloring for any list of k colors
assigned to each edge. The list-edge-chromatic number of a graph G, denoted χ′l(G), is the minimum k for
which G is k-edge-choosable.

As with the list-chromatic number, we would like to find ways to characterize and/or bound χ′l(G).
However, unlike χl(G), which differs significantly from χ(G), the list-edge-chromatic number and the edge-
chromatic number are quite similar. In fact, it is conjectured that the two values may be equal. Some
properties of χ′l(G) follow:

1. χ′l(G) < 2χ′(G).

2. χ′l(G) < (1 + o(1))χ′(G).

3. χ′l(Kn,n) = n.

The first property follows from the fact that χ′(G) ≤ 2∆(G) − 1 and χ′l(G) ≤ 2∆(G) − 1. The second
property is a result of a 2000 paper by Jeff Kahn [5], and states that the list-edge-chromatic number and the
edge-chromatic number are asymptotically equal. The final property is due to Galvin [4], and is discussed
in greater detail below.

5.1 List coloring conjecture

As suggested in the previous section, the list coloring conjecture is as follows:

Conjecture 5.1. For all graphs G, χ′l(G) = χ′(G).

Incremental progress has been made on this problem, although there is as of yet no known solution.
As mentioned above, the two values have been shown to be asymptotically equal [5], and there are papers
addressing specific cases of the list coloring conjecture in small complete graphs [6], perfect multigraphs [7],
and complete bipartite graphs [4]. We shall conclude this paper with a brief discussion of the list coloring
conjecture for complete bipartite graphs.

5.2 Galvin’s theorem

Galvin’s theorem is a specific instance of the list coloring conjecture for complete bipartite graphs Kn,n. It
states the following:

Theorem 5.1. For all complete graphs Kn,n, χ
′
l(Kn,n) = n.

Prior to its proof in 1995, this statement was known as the Dinitz Conjecture. It was typically formulated
as a question about Latin squares; namely, given an n × n square array, a set of m ≥ n symbols, and an
n-element list of symbols available to each cell, is it possible to fill in the grid such that no column and no
row contain repeated symbols? We will provide a brief outline of the proof of this theorem. For a detailed
examination, see [4].

The proof combines two previously known results. The first is a lemma due to Bondy et al., which states
that for any digraph G with vertices {v1, v2, ..., vn} such that the out-degree of vi is di, and such that every
induced subgraph of G has a kernel, there exists a set Ai of size at least di + 1 such that each vertex vi of G
may be properly colored with some color from Ai. The second is a version of the Gale-Shapley algorithm,
which states that given two sets, each with preferences for each other, it is always possible to find a pairing
that is stable. Galvin found a clever way to combine these two results, along with properties of complete
bipartite graphs, to show that the edges of Kn,n can always be properly colored when assigned lists of size
n.
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