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Abstract

We introduce a class of graphs called split graphs and explore their attributes. We provide three
methods for determining whether an arbitrary graph is split, and show that these characterizations are
correct. Finally, we examine how split graphs provide computational advantage over arbitrary graphs in
traditionally difficult optimization problems.

1 Introduction

A simple graph is said to be split if its vertex set can be partitioned into a clique and an independent set.
We formalize this idea as follows:

Definition 1.1. A graph G is split if its vertex set V (G) can be partitioned into two disjoint sets K and I
such that K is a clique and I is an independent set.

Let’s consider a simple example:

K I

Here, K is a K5 and I is a set of 4 independent vertices. We might make the observation that this is in fact
not the only partition G = (K, I) that forms a split graph. We could easily move any v from K to I, so long
as for all u ∈ I, uv /∈ G (i.e. v is not adjacent to any vertex in I). In our example, we can move the leftmost
vertex in the clique K to the independent set I, giving us the following split:

K I
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We will examine some more properties of split graphs below.

1.1 Basic properties

One simple observation we can make about split graphs is that they are self-complementary (i.e. if G is a
split graph, then G is a split graph). This follows immediately from the fact that the complement of a clique
is an independent set. A slightly less obvious result claims that split graphs are a subset of chordal graphs.

Definition 1.2. A chordal graph, also known as a triangulated graph, is a graph G where every cycle C of
length greater than 4 has a chord (an edge not in C that connects two vertices in C).

Theorem 1.1. Let G be a graph. Then G is split if and only if G and G are chordal.

Proof: =⇒ Suppose G is split and contains a chordless cycle C of length ≥ 4. At least 1 vertex and at most
2 vertices of C are in K. Since any two vertices in K are connected, this implies that I must contain at least
2 connected vertices. Therefore, G must be chordal. If G is split, then G is also split, and so G must also
be chordal.
⇐= This proof is due to Foldes and Hammer [1]. Suppose both G and G chordal. It follows that the

largest induced cycles in both G and G are triangles. Let K be the maximum clique in G. If there are
multiple maximum cliques, let K be the clique such that e(G[V (G) \K]) (the edge set of the graph induced
by V (G) \K) is minimized. We show that V (G) \K is independent.

Suppose for contradiction that x, y are two adjacent vertices in V (G) \K. We claim that there exist two
distinct vertices u, v ∈ K such that x � u and y � v (i.e. xu /∈ E(G) and yv /∈ E(G)). Clearly, neither x nor
y is adjacent to all vertices in K, as this would imply that K is not maximum. Additionally, if x and y were
adjacent to all vertices in K except some vertex z, then we could form a larger clique K ′ = K \ {z}∪ {x, y}.
We also claim that exactly one of the edges in {xv, yu} is in E(G). If both xv, yu ∈ E(G), then (x, y, u, v)
is an induced C4 in G. If neither edge is in E(G), then (x, v, y, u) is an induced C4 in G. Without loss of
generality, suppose yu ∈ E(G).

We claim that y is adjacent to all vertices of K except v. Suppose otherwise. Then there exists some
vertex w ∈ K, w 6= v such that yw /∈ E(G). Either x is adjacent to w or x is not adjacent to w. If x ∼ w,
then (x,w, u, y) forms an induced C4 in G. If x � w, then (x, v, y, w) is an induced C4 in G.

Let’s recap. We have x, y ∈ V (G) \K, and u, v ∈ K. We have shown that if xy ∈ E(G \K), then y is
adjacent to all vertices in K except v, and x is not adjacent to u or v.

We show that if any other vertex t in V (G) \K is not adjacent to y, then t is not adjacent to v. Suppose
otherwise and let t be a vertex in V (G) \K adjacent to v and not adjacent to y. Then t must be adjacent
to x, or otherwise (x, t, y, v) would form an induced C4 in G. However, if t ∼ x, then (x, t, v, u, y) forms an
induced C5 in G.

We propose that there exists another clique K ′ in G that provides a smaller edge set in the graph induced
by V (G) \K ′. Let this graph be K ′ = K \ {v} ∪ y. Then the edge set of the graph induced by V (G) \K ′
contains at least one fewer edge than the graph induced by V (G) \K (namely, we lose the edge xy and do
not gain a corresponding edge xv). This is a contradiction, and we conclude that no two vertices in V (G)\K
are adjacent.

This theorem provides us with a specific characterization of split graphs as self-complementary chordal graphs.
From the fact that split graphs are a subset of chordal graphs and chordal graphs are perfect, we can make
one final observation:

Theorem 1.2. If G is a split graph, then G is perfect.

As a final note:

Definition 1.3. A graph G is perfect if and only if for every induced subgraph H of G, the chromatic
number of H is equal to the size of the maximum clique in H (i.e. χ(H) = ω(H)).
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1.2 Motivating questions

Here are some additional questions to consider:

• How do we determine if a graph G is split?

• What are the attributes of a split graph?

• What is the maximum independent set I? What is the maximum clique K? How do we find them?

• What is the minimum clique cover?

• What about colorings?

We will address these questions in roughly the order they appear.

2 Characterizations

2.1 Degree sequence and vertex ordering

How might we identify a split graph G = (K, I)? Since a clique is maximally connected and an independent
set is minimally connected, it seems reasonable to suggest that whether or not a graph is split might have
something to do with the degrees of its vertices. In fact, we can see that the number of edges between K
and I is exactly the same as the total degree of all vertices in I (i.e.

∑
v∈I d(v)). Suppose |K| = k. Then,

since the total degree of G[K] (the subgraph of G induced by K) is k(k − 1), we should expect that∑
v∈K

d(v)−
∑
v∈I

d(v) =
∑

v∈G[K]

d(v) = k(k − 1).

Furthermore, if K is maximum, we should expect that every vertex in K has degree at least as large as every
vertex in I. Otherwise, there would be some vertex in I that is connected to all vertices in K, violating our
assumption that K was maximum. Therefore, we should be able to cut the degree sequence (d1, d2, ...., dn)
of a split graph at some value i into the sets K and I. Together, these observations give us the following
theorem:

Theorem 2.1. Let S = (v1, v2, ..., vn) be an ordering of the vertex set V (G) such that vi ≥ vi+1 for all
vi ∈ S. Then, G is a split graph if and only if there exists a value m = 1, ..., n such that summing over S
gives:

m∑
i=1

d(vi)−
n∑

i=m+1

d(vi) = m(m− 1).

Proof: =⇒ Suppose G is split. Then V (G) can be partitioned into sets K and I. Let K be a maximum
clique. Let m = n(K). We claim that K = (v1, v2, ..., vn) and I = (vn+1, ..., vm). Suppose otherwise. Then
there exists some u ∈ K, v ∈ I such that d(u) < d(v). However, if this is the case, then K∪v must be a clique
that is strictly larger than K. This violates our assumption that K is maximum. Therefore,

∑m
i=1 d(vi) is

equal to the number of edges in G[K] plus the edges between K and I. Since the number of edges between
K and I is given by

∑n
i=m+1 d(vi), we have:

m∑
i=1

d(vi) =

n∑
i=m+1

d(vi) +m(m− 1).

⇐= The proof is presented in Hammer and Simeone (1981) [2].

There is another vertex ordering that may be used to characterize split graphs. In a 2018 paper [3],
David Wood presents the following characterization:
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Theorem 2.2 (Wood). A graph G is split if and only if G has a vertex ordering (v1, v2, ..., vn) such that for
all i < j < k:

vivj ∈ E(G)⇒ vjvk ∈ E(G).

To understand the idea behind this theorem, note that such an ordering requires that the first m vertices
be independent, while the remaining n −m vertices form a clique. Suppose otherwise. Let vi, vj /∈ K and
vivj ∈ E(G). Then there must exist a k such that vjvk /∈ E(G), because otherwise vj would be part of K.
Therefore, vivj /∈ E(G), and (v1, ..., vm) is independent.

2.2 Forbidden subgraphs

Split graphs can also be characterized by their forbidden subgraphs. These are a set of induced subgraphs in
G whose absence (or presence) determines whether G is (or is not) split. A result from Foldes and Hammer
in 1977 [1] provides the following theorem:

Theorem 2.3 (Foldes and Hammer). A graph G is split if and only if it does not contain a 2K2, C4, or C5

as an induced subgraph.

Proof: =⇒ This follows almost directly from Theorem 1.1. Since G is a split graph, both G and G are
chordal (i.e. the largest induced cycles in G and G are triangles). Note that 2K2 is the complement of C4.
Therefore, G cannot contain 2K2, C4, or C5 as induced subgraphs, as containing any of these would require
that either G or G not be chordal.
⇐= Suppose G does not contain a 2K2, C4, or C5 as an induced subgraph. Because any Cn, n > 5

contains a 2K2 as an induced subgraph, G must not contain any induced cycles larger than C3. Therefore,
G is chordal. Similarly, because C4 = 2K2 and C5 = C5, G also does not contain 2K2, C4, or C5 as induced
subgraphs. By the same argument, G is chordal. Therefore, because G and G are chordal, G must be split.

3 Optimization Problems

3.1 Runtimes and O(n)

Split graphs afford significant computational speed-ups on traditionally difficult algorithmic problems in
graph theory. Computational problems can be categorized by their runtime as a function of their input.
This is represented by something called big-O notation. Take, as a simple example, the problem of finding
an item in a list of length n. Supposing that this list is not ordered in any meaningful way, the best
approach we have for finding our item is simply checking everything in the list until we find it. In the worst
case scenario, this requires n steps. We therefore say that this problem has a runtime of O(n).

Runtimes are a useful metric for understanding if a problem is computationally tractable. While comput-
ers are capable of running millions of computations a second, algorithms whose runtimes grow exponentially
as a function of their inputs can present a problem. Suppose, for example, that you had an algorithm whose
runtime was O(10n). This would probably be fine for smaller n, but once you get to around n = 10 things
will start to slow down. Even worse, your program will run ten times slower every time you increase the input
size by 1. It is for this reason that computer scientists and mathematicians distinguish between programs
that run in polynomial time (n is some polynomial function) and non-polynomial time (n is an exponential
or a factorial or something worse). The problem of P = NP posits that there exists a polynomial time
algorithm for any computational problem.

Many problems in graph theory require non-polynomial time to solve on arbitrary graphs. These include
finding a graph’s maximum clique, maximum independent set, minimum clique covering, and problems
of coloring. In the following sections, we will present solutions to these problems on split graphs that
demonstrate a significant improvement in algorithmic runtime.

3.2 Maximum clique and maximum independent set

The following result from Hammer and Simeone [2] provides a characterization of a split graph G in terms
of its maximum clique ω(G) and minimum independent set α(G):
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Theorem 3.1 (Hammer and Simeone). Let G be a split graph with clique K and independent set I. Exactly
one of the following statements is true:

1. n(I) = α(G) and n(K) = ω(G). In this case, G = (K, I) is a unique partition of G into a clique and
independent set.

2. n(I) = α(G) and n(K) = ω(G)− 1. In this case, there is an x ∈ I such that K ∪ {x} is complete.

3. n(I) = α(G)− 1 and n(K) = ω(G). In this case, there is a y ∈ K such that I ∪ {y} is independent.

Proof: The following proof is due to Golumbic [?]. Since a clique and an independent set can have at most
one common vertex, ω(G) + α(G) must be either n(G) or n(G) + 1. We proceed in cases:

1. Suppose ω(G) + α(G) = n(G). This corresponds to statement 1. We show that there is no other
partition of G into K and I. Suppose otherwise. Let G = (K ′, I ′) where K ′ is a clique and I ′ is an
independent set. Let {x} = I ∩K ′ and let {y} = I ′ ∩K. We consider two cases:

(a) Suppose xy ∈ E(G). Then K ∪ {x} is a clique of size ω(G) + 1. This is not possible.

(b) Suppose xy /∈ E(G). Then I ∪ {y} is an independent set of size α(G) + 1. This is not possible.

Therefore, I ∩K ′ = I ′ ∩K = ∅ and G = (K, I) is unique.

2. Suppose ω(G) + α(G) = n(G) + 1. This corresponds to statements 2 and 3. For statement 2, let
n(K) = ω(G) − 1 and n(I) = α(G). Let K ′ be a clique of size ω(G). Note that K ′ ∪ I is non-empty,
since K ′ > K and G = (K, I). Therefore, K ′ ∪ I = {x} and K ′ = K ∪ x. The same argument follows
symmetrically for statement 3.

From theorem 2.1, we observe that it takes linear time to identify whether or not a graph is split. Note
also that theorem 2.1 provides a candidate clique and independent set. From theorem 3.1, it clearly takes
linear time to identify whether this clique is maximum (since we must simply iterate over the independent
set). Therefore, the problem of finding a maximum clique is linear. Similarly, it takes linear time to identify
whether the candidate independent set is maximum. Therefore, finding a maximum independent set is also
solvable in linear time on split graphs.

3.3 Minimum clique covering

In [4], Gavril presents a construction for the clique cover of a chordal graph G. To understand this result,
we must first present some definitions:

Definition 3.1. An orientation of a graph’s edges is called an R-orientation if:

1. The resulting digraph has no directed cycles.

2. If b→ a and c→ a, then either b→ c or c→ b.

The following theorem is due to Rose [5]:

Theorem 3.2. A finite graph G is chordal if and only if it has an R-orientation.

In the proof of this theorem, Rose develops an algorithm for constructing an R-orientation of a chordal
graph. We shall not present the proof here, but we will note that the R-orientation of a chordal graph is
such that each vertex is labeled 1, ..., n and each edge between two vertices is directed from low to high. We
now present Gavril’s construction for the minimum clique cover of a chordal graph G [4].

Let G be an R-oriented chordal graph. Let i be a vertex in G. Let Ji be the set of all vertices j such
that j → i. We inductively define the following sequence of vertices n1, n2, ..., nt. Let n1 = n. Let nk be
the largest vertex smaller than nk−1 not in Jn1 ∪ ...∪ Jnk−1

. Any vertex smaller than nt is in Jn1 ∪ ...∪ Jnt .
From this definition, we have that {n1, ..., nt} ∪ Jn1 ∪ ... ∪ Jnt = V (G).

We observe that {n1, ..., nt} is an independent set of size t, and that therefore any minimum clique
cover must contain at least t cliques. We also observe that every Sni

= Jni
∪ {ni} is a clique and the set
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(Sn1 , ..., Snt) covers G. We therefore conclude that the minimum clique cover is of size t and is given by
(Sn1 , ..., Snt).

To calculate the runtime of an algorithm designed to find a minimum clique cover of a chordal graph,
note that it takes (n−k−1)(k−1) steps to find the largest vertex smaller than nk−1 not in Jn1

∪ ...∪Jnk−1
.

Since this operation must be done for k vertices, we have:

t∑
k=1

(n− k − 1)(k − 1) =
t(t− 1)(3n− 2t+ 1)

6
.

Since split graphs are a subset of chordal graphs, we conclude that a minimum clique covering on a split
graph can be found in at least polynomial time.

3.4 Graph coloring

In split graphs, the problem of vertex coloring is reduced to the problem of finding the maximum clique.
Let G be a split graph with maximum clique K and independent set I. We observe that all vertices in I
may be colored using the same colors as vertices in K. Suppose otherwise. Then there must be a vertex in
I adjacent to all vertices in K. However, this implies that K is not maximum. Therefore, coloring I does
not require additional colors. Since a complete graph on k vertices is k-colorable, we conclude that a split
graph is ω(G)-colorable (χ(G) = ω(G)).

As we observed above, the algorithm for finding a maximum clique in G is linear on the size of G. Once a
maximum clique is identified, the algorithm can simply greedy color first K, then I. Since I is independent,
the greedy coloring will use no colors other than those used to color K. Since the greedy coloring algorithm
runs in linear time, we conclude that the minimum vertex coloring on G may be computed in linear time.
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