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A Motivating Example

(Perhaps entirely unsurprisingly), this sort of bipartite graph
construction maximizes the number of edges in triangle free graphs
on n vertices. While we won’t prove this, hopefully it is at least
intuitively clear why such a statement is reasonable.

In general, the maximum number of edges in a triangle-free graph
on n vertices is: j
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A Motivating Example

We will refer to the maximum number of edges in an n-vertex
graph that does not contain a copy of some graph H as the
extremal number of H, and we will write:

ex(n,H).

On the previous slide, we showed that:

ex(n,K3) =

�
n
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⌫
.

It is natural to wonder what the extremal numbers of other graph
classes are. In fact, this is one of the main topics in the field of
extremal combinatorics. Perhaps the most obvious question is:

What is ex(n,Kr )?
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A Motivating Example

A natural place to start is with the following question:

What class of graphs are Kr -free?
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A Motivating Example

In much the same way that the bipartite graph is triangle-free, we
can see that the r -partite graph is Kr -free. Specifically, in the
previous example, we saw that the 4-partite graph does not contain
any K5’s.

It is therefore natural to assume that such a construction
maximizes the number of edges in a Kr -free graph. Again, this is
TRUE, although we will not prove it.
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A Motivating Example

TO SUMMARIZE:

Bipartite graphs are good for making edge-y triangle-free graphs.

r -partite graphs are good for making edge-y graphs that do not
contain cliques.



Something a bit more challenging...

What if H is a bipartite graph? What is ex(n,H)?

What types of graphs are edge-y and also bipartite-free?

This problem is NOT EASY.

If a graph is edge-y, are there specific regions of the graph that are
even edge-y-er?
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Dependent random choice

The lemma of dependent random choice tells us that an “edge-y”
graph does have “edgier” regions. Formally, it says:

Lemma
Let a, d ,m, n, r be positive integers. Let G = (V ,E ) be a graph

with |V | = n vertices and average degree d = 2|E (G )|/n. If there
is a positive integer t such that
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then G contains a subset U of at least a vertices such that every r

vertices in U have at least m common neighbors.
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Dependent random choice

The statement of this lemma is a bit of a nightmare. We will look
at it visually.

Lemma
Let a, d ,m, n, r be positive integers. Let G = (V ,E ) be a graph

with |V | = n vertices and average degree d = 2|E (G )|/n. If there
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Let’s suppose that r = 3 and m = 2.
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Dependent random choice

So: dependent random choice tells us that we can always find a
subset of vertices U such that
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Let’s take a moment to understand the structure of this set U.
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Dependent random choice

Suppose we have some graph where |U| = 2, r = 2 and m = 4.
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How about |U| = 3, r = 2 and m = 5?
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Dependent random choice

The edges incident to the vertices in U all seem to form bipartite
graphs... Specifically:

H = K2,2 & |U| = 2 = |B |; r = 2 = �(HB); m = 4 = |A|+ |B |
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Dependent random choice

The edges incident to the vertices in U all seem to form bipartite
graphs... Specifically:

H = K2,3 & |U| = 3 = |B |; r = 2 = �(HB); m = 5 = |A|+ |B |
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Dependent random choice

In general, it seems that if a graph G has |U| = |B |, r = �(HB),
m = |A|+ |B |, then it must contain a copy of K|A|,|B|. Can this
helps us determine an upper bound on ex(n,H)?

YES!
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Dependent random choice

Theorem
Let H be a bipartite graph with parts A and B . If all vertices in B

have degree at most �(HB) = s, then ex(n,H)  cn
2� 1

s , where c

is a constant whose value depends only on H.

Proof idea/by example: We reverse-engineer
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to determine how many edges G must have in order for U to
contain a copy of H, where |U| = |B |, r = �(HB) = s, and
m = |A|+ |B | (as we saw in the above examples).
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Letting d = 2cn1�1/s , r = t = �(HB) = s, m = |A|+ |B |, we
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Finally, since c is simply some function of H, we can do some
clever substitutions to get:
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(2cn1�1/s)s
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This tells us that a graph G with average degree 2cn1�1/s must
contain a subset U with |U| = |B | such that every set of
r = s = �(HB) vertices in U has m = |A|+ |B | neighbors.
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That was a lot of math. What is the takeaway?

I If G has average degree 2cn1�1/s , then it contains a set U
that guarantees the existence of a bipartite graph (as
suggested by the above examples).

I If G has average degree 2cn1�1/s , then |E (G )| � cn
2�1/s by

the Handshaking Lemma.

CONCLUSION: If G has at least cn2�1/s edges, then G contains a
bipartite graph. Therefore,

ex(n,H)  cn
2� 1

s .
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HIGH-LEVEL SUMMARY:

I Dependent random choice is a technique that allows us to
make quantitative statements about small regions of a graph
G , based only on the size of G and its average degree.

I This is useful because it provides an easy way to guarantee
the presence of some (relatively) small graph H inside of G .
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