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Bootstrap Percolation
Definitions

Definition
Let G be a graph, let v be a vertex of G , and let At ⊆ V (G ) be a
set of infected vertices of G . We say that v becomes infected
under r -neighbor bootstrap percolation if |NG (v) ∩ At | ≥ r .

Explanation

If a cell is adjacent to at least r infected cells, it becomes infected.
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Bootstrap Percolation
Definitions

Definition
A set of initially infected vertices in a graph G is said to be lethal
or percolate if the infection eventually spreads to every vertex in G .

Definition
We denote by m(G , r) the minimum size of a lethal set in G .



Bootstrap Percolation
Definitions

Definition
Let

∏d
i=1[ai ] represent the d-dimensional grid graph. For ease of

notation, we define

m

(
d∏

i=1

[ai ], r

)
= m(a1, . . . , ad , r).

Explanation

The expression m(a1, . . . , ad , r) refers to the smallest lethal set on
the d-dimensional grid graph with side lengths a1, . . . , ad .

Question
What is m(n, n, 2)?
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m(n, n, 2)

In the previous example, we observed that

m(10, 10, 2) ≤ 10 :

Is this the best we can do?
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The perimeter of infection can never increase.

perimeter of infection = 40



m(n, n, 2)

The perimeter of infection can never increase.

X

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

perimeter of infection = 40



m(n, n, 2)

The perimeter of the lethal set must be at least as large as the
perimeter of the grid. For some lethal set A0 in [10]× [10], we
therefore have:

perimeter(A0) ≥ perimeter([10]× [10]) = 4(10).

Note that the perimeter of A0 is at most 4|A0|, and so

4|A0| ≥ 40 =⇒ |A0| ≥ 10.

We have seen an example where |A0| = 10, so we conclude that

m(10, 10, 2) = 10.

It should (hopefully) not be too surprising that this argument
generalizes to

m(n, n, 2) = n.
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Summary

Furthermore, the same idea can be applied to rectangular grids to
obtain:

m(a1, a2, 2) ≥
⌈

1

2
(a1 + a2)

⌉
.

Let us now turn to the results of this research:

Tight Bounds︸ ︷︷ ︸
exact size of

smallest lethal set

on 3-Neighbor︸ ︷︷ ︸
with infection
threshold of 3

Bootstrap Percolation︸ ︷︷ ︸
(on 3D rectangular grids)

We would like to determine the exact value of m(a1, a2, a3, 3).

What is the size of the smallest lethal set on all 2- and
3-dimensional grids under 3-neighbor bootstrap percolation?
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Example: [3]× [3]× [3]

|A0| = 9
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Results

1. For all a1, a2, a3 ≥ 11, we have that

m(a1, a2, a3, 3) =

⌈
1

3
(a1a2 + a2a3 + a3a1)

⌉
;

We know the smallest lethal set on all sufficiently large grids.

2. For G = Ca1+1�Ca2+1�Ca3+1 and a1, a2, a3 ≥ 11,

m(a1, a2, a3, 3) + 1 ≤ m(G , 3) ≤ m(a1, a2, a3, 3) + 2;

We know* (within 1) the smallest lethal set on all sufficiently
large tori.

3. m(n, n, 3) = 1
3(n2 + 2n) if and only if n = 2k − 1, for some

k > 0.
We know the smallest lethal set on square grids.
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Strategy

How do we obtain this result?

Our basic approach will be:

1. Determine a lower bound on m(a1, a2, a3, 3);

2. Find lethal sets that match this lower bound.

For a lower bound, we can generalize the perimeter argument to
3-neighbor percolation in three dimensions.
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Lower Bound

When a cube becomes infected, the total surface area of infection
cannot increase.
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The surface area of the lethal set must be at least as large as the
surface area of the grid. For some lethal set A0 in
G = [a1]× [a2]× [a3], we therefore have:

surface area(A0) ≥ surface area(G ) = 2(a1a2 + a2a3 + a3a1).

Note that the surface area of A0 is at most 6|A0|, and so

6|A0| ≥ 2(a1a2 + a2a3 + a3a1) =⇒ |A0| ≥
⌈
a1a2 + a2a3 + a3a1

3

⌉
.

This gives us the following lower bound:

m(a1, a2, a3, 3) ≥
⌈
a1a2 + a2a3 + a3a1

3

⌉
.

We are shooting for m(a1, a2, a3, 3) ≥ d(a1a2 + a2a3 + a3a1)/3e.
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Our basic approach will be:

1. Determine a lower bound on m(a1, a2, a3, 3);

2. Find lethal sets that match this lower bound.

2.1 Find a good set of “atomic” examples;
2.2 Assemble these examples into all larger “molecular” grids.

We present our methodology for generating these “atomic” pieces.
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Lethal infections on 3 mutually perpendicular faces of
G = [a1]× [a2]× [a3] are lethal on G .
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Three Walls

This is true for lethal infections on any 3 mutually perpendicular
walls.



Origami

Suppose we have a 2D grid. We can imagine folding this flat grid
up into a 3D structure.
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Origami

By our “three walls” argument, any lethal set on this 2D grid will
also be lethal on the resulting 3D structure.
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Origami

Applying this process to a variety of 2D grids, we are able to
obtain tight bounds on:

m(a1, a2, 2)1 :


a1, a2 ≡ 0 mod 3, and a1 6≡ a2 mod 6;

a1, a2 ≡ 2 mod 3, and a1 6≡ a2 mod 6;

a1 ≡ 0 mod 3, and a2 = 3.

m(a1, a2, 3)1 :


a1 ≡ 3 mod 6, and a2 ≡ 1 mod 2;

a1 ≥ 2, and a2 ∈ {3, 6};
a1 ≡ 3 mod 6, and a2 = 4.

We can get a lot of tight constructions for grids of the form
[a1]× [a2]× 2 and [a1]× [a2]× 3.

1Some small examples are omitted for the purposes of clarity.
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1. Determine a lower bound on m(a1, a2, a3, 3);

2. Find lethal sets that match this lower bound.

2.1 Find a good set of “atomic” examples;
2.2 Assemble these examples into all larger “molecular” grids.

We obtain tight lethal constructions on grids of height 5,6, and 7,
and then use these constructions to obtain tight lethal
constructions on all grids.
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Recursion

What if we replace each infected node with a minimum percolating
set?

1. Will it percolate? YES

2. What is the size of this new set S?



Recursion

a1 × b1 × c1 =⇒ (a1b1 + b1c1 + c1a1)/3

a2 × b2 × c1 =⇒ (a2b2 + b2c1 + c1a2)/3

a2 × b1 × c2 =⇒ (a2b1 + b1c2 + c2a2)/3

a1 × b2 × c2 =⇒ (a1b2 + b2c2 + c2a1)/3



Recursion

What is the size of this new set S?

We can see that

|S | = (a1b1 + b1c1 + c1a1)/3 + (a2b2 + b2c1 + c1a2)/3

+ (a2b1 + b1c2 + c2a2)/3 + (a1b2 + b2c2 + c2a1)/3

which we can simplify to

(a1 + a2)(b1 + b2) + (b1 + b2)(c1 + c2) + (c1 + c2)(a1 + a2)

3
.

This is the minimum size of a percolating set on our
(a1 + a2)× (b1 + b2)× (c1 + c2) grid!
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Example: [8]× [8]× [5]

Some Observations:

1. We have assembled a perfect lethal set on a grid of height 5
from our small “atomic” examples.

2. We can repeat this process to obtain perfect lethal sets on:
I [3b1]× [3b2]× [5]
I [3b1]× [3b2]× [6]
I [3b1]× [3b2]× [7].

We use these constructions to generate optimal lethal sets on all
grids of size at least 11.
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One Proof

Some Facts:

1. We have perfect lethal sets on the following grids, for
b1, b2 ≥ 2:
I [3b1]× [3b2]× [5]
I [3b1]× [3b2]× [6]
I [3b1]× [3b2]× [7]

2. Every number ai ≥ 11 can be written as 3bi + ri , for some
bi ≥ 2 and ri ∈ {5, 6, 7}.

3. *trust me* All grids [r1]× [r2]× [r3] for r1, r2, r3 ∈ {5, 6, 7}
admit lethal sets with size matching the lower bound. *trust
me*

The following diagram illustrates how to obtain a perfect lethal set
on the grid [3b1 + r1]× [3b2 + r2]× [3b3 + r3] = [a1]× [a2]× [a3].
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Summary

1. We determined a lower bound on m(a1, a2, a3, 3) by
generalizing the perimeter bound to three dimensions.

2. We used a folding strategy to convert 2D lethal sets into 3D
families of lethal sets.

3. We used these 3D families as building blocks to assemble
complete sets on larger grids.

4. Using the complete sets on grids of height 5,6, and 7, we
obtained tight lethal constructions on all grids
[a1]× [a2]× [a3], for a1, a2, a3 ≥ 11.

5. We conclude that

m(a1, a2, a3, 3) =

⌈
a1a2 + a2a3 + a3a1

3

⌉
for all for a1, a2, a3 ≥ 11.
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THANKS
https://ahblay.pythonanywhere.com


