
WINNING DOTS-AND-BOXES IN TWO AND THREE DIMENSIONS

by Abel Romer

Submitted in partial fulfillment of the requirements for the
Degree of

Bachelor of Arts and Sciences
Quest University Canada

and pertaining to the Question

What makes simple complicated?

May 3, 2017

Glen Van Brummelen, Ph.D. Abel Emanuel Romer

ABSTRACT

This paper is divided into three sections. The first section provides basic
grounding and mathematical theory behind the children’s game of Dots-and-
Boxes. It covers basic concepts in combinatorial game theory, including the
game of Nim and nimbers, other simple games and the Sprague-Grundy
Theorem. We then provide an overview of how these concepts are applied
to the game of Dots-and-Boxes, and end with a description of the current
mathematical theory on the game. The second section describes the author’s
design of a Java computer program to play Dots-and-Boxes. Similarly to
chess, most Dots-and-Boxes games remain unsolved due to their enormous
number of possible game states. This section addresses potential remedies to
this time-space problem, and describes their implementation in the author’s
program. The third section extends the game of Dots-and-Boxes to three-
dimensional space and examines three possible ways to play. For each of
these cases, the author develops basic equivalencies to the existing strategies
for two-dimensional Dots-and-Boxes and examines any significant differences
between the games.

1

CONTENTS

1 Combinatorial Game Theory 4
1.1 The Basics . 4
1.2 Impartial Games . 9
1.3 The Sprague-Grundy Theorem 11
1.4 Two More Complicated Games 12

1.4.1 Kayles . 12
1.4.2 Dawson’s Kayles . 13

1.5 Dots-and-Boxes . 14
1.5.1 The Naive Approach 15
1.5.2 Double-Dealing and Long Chains 15
1.5.3 Strings-and-Coins . 19
1.5.4 Nimstring . 19

2 The Program 23
2.1 Other Games . 23
2.2 The Basic Structure . 24
2.3 Accounting for Space and Time 27

2.3.1 Transposition Tables 27
2.4 Analysis Techniques . 28

3 What About 3D? 31
3.1 How Should We Play? . 31
3.2 The Trivial Case . 32
3.3 Dealing With Multiples . 34

3.3.1 1 string, ≥ 2 coins . 34
3.3.2 Nimstring: 1 string, ≥ 2 coins 40
3.3.3 Further Questions . 42
3.3.4 ≥ 1 string, ≥ 2 coins 43

2

3.3.5 Nimstring: ≥ 1 string, ≥ 2 coins 44
3.3.6 Further Questions . 46

4 Wrapping Up 47

A Connections to Graph Theory 50
A.1 Original Nimstring . 50
A.2 1 string, ≥ 2 coins Nimstring 50
A.3 ≥ 1 string, ≥ 2 coins Nimstring 50
A.4 Generalities . 51

B The Code 52
B.1 Main Class . 52
B.2 Strategy Class . 53
B.3 Board Class . 56
B.4 Coin Class . 59
B.5 Transposition Class . 60
B.6 Utilities Class . 61

3

COMBINATORIAL GAME THEORY

THE BASICS

Combinatorial game theory is the area of mathematics devoted to under-
standing a special class of games called combinatorial games. A combinato-
rial game1

1. is played between two players;

2. has perfect information (each player knows everything about the game;
there are no chance devices nor hidden pieces);

3. must end (typically when there are no remaining moves; the player
unable to make a move loses);2

4. cannot end in a draw;

The archetypal example of a combinatorial game is Nim (which we will intro-
duce later). Games that do not fulfill these criteria include poker (no perfect
information), Tic-Tac-Toe (may end in a tie), chess (may end in a draw or
may not end) and Dots-and-Boxes (does not follow normal play convention).
However, we shall see that the results of combinatorial game theory can still
help us understand these games. It is also common to see games constrained
by impartiality. In an impartial game, both players have access to the same
set of moves. Dots-and-Boxes is considered impartial, because any line which
may be drawn by one player may also be drawn by his opponent. In contrast,
chess is not impartial, since one player may only move white pieces while the
other may only move black. Although we do not include impartiality in

1There are some exceptions, but for the purposes of our discussion this list will suffice.
2This is called normal play. In misere play, the player unable to move is considered

the winner.

4

our definition of combinatorial games, our discussion will focus on impartial
games.

Let us take a moment to play a very simple combinatorial game, which
we shall call

Socks-and-Boxes. This game is played between two players, whom we shall
refer to as Left and Right. A cardboard box contains some number of blue and
red socks. Left may only remove bLue socks from the box and Right may only
remove Red socks. The two players alternate removing any number of their
appropriately colored socks. The game follows the normal play convention,
so the first player unable to move is declared the loser.

We can easily characterize any Socks-and-Boxes game by the difference
d = blue − red. This number gives us the move advantage for Left (when
positive) or Right (when negative). For example, in a game beginning with
3 blue socks and 1 red sock, Left has two more available moves than Right
and may easily win, independent of who moves first. In a game where d = 0,
the first player to move will inevitably lose the game. Let us take a moment
to work through a game G beginning with 2 blue socks and 3 red socks.
Supposing Left moves first, the possible sub-positions are either 1 blue and 3
red or 0 blue and 3 red, with advantages of d = −2 and d = −3, respectively.
If Right moves first, the outcomes are either 2 blue and 2 red, or 2 blue and
1 red, or 2 blue and 0 red. These have advantages d = 0, d = 1 and d = 2.
We might then express G as the set of all the positions that Left may move
to and the set of all positions that Right may move to, or

{−2,−3 | 0, 1, 2}.

Clearly removing one sock is always the best move, so we might simplify this
result to {−2 | 0}. We already know that the evaluation of the 2 blue, 3 red
game is d = −1, so {−2 | 0} somehow equals −1. We shall see why below.

Simple combinatorial games, like Socks-and-Boxes, are conventionally de-
scribed in the following notation:

{a, b, c, d, ... | e, f, g, h, ...},

where XL = {a, b, c, d, ...} represents the numerical evaluations of all possible
positions that Left can move to and XR = {e, f, g, h, ...} represents the same
for Right. Scores are defined in terms of Left, so Left will always choose the

5

maximum ofXL and Right will always choose the minimum ofXR. Supposing
that max{XL} = xL and min{XR} = xR, we may simplify our notation to

{xL | xR},

the value of which represents the move advantage (value) of the game. But
what is this value? Let us begin with the simplest possible case:

{ | }.

Here, neither Left nor Right have any available moves, which means that, by
the normal play convention, whomever moves first loses. Any game where
the first player to move is guaranteed a loss is considered to have value 0.
Therefore, { | } = 0. Suppose now that we have the game

{0 | }.

If Right moves first, he shall lose. On the other hand, if Left moves first, he
shall move to a game with value 0, which will cause Right to lose. In either
case, Left wins, so we assign this position a value of 1.3 Building this up
recursively, we call

{1 | } = 2, {2 | } = 3, ..., {n | } = n+ 1.

For an intuitive understanding of this result, consider again Socks-and-Boxes.
If the game starts with n+ 1 blue socks, Left’s best move is to remove 1 blue
sock, whereas Right cannot move. We may model this position with the
expression {n | } = n+ 1. Negative integer game-values may be constructed
using the same technique, corresponding to advantages for Right.

We may also encounter games with fractional advantages, which may be
described by

2p+ 1

2q+1
=

{
p

2q
| p+ 1

2q

}
.

To develop a bit of intuition about this result, consider a game with position
{0 | 1}. Unfortunately, this situation cannot be modeled by Socks-and-Boxes.
Any position where the optimal move by Left leads to a game with value 0
must have d = 1. However, the best move by Right from a position with
value d = 1 is to a position with d = 2. To understand {0 | 1}, we must add
a new rule to Socks-and-Boxes.

3See Donald Knuth’s Surreal Numbers[7] and Berlekamp, Conway and Guy’s Winning
Ways for you Mathematical Plays Vol. 1 [4] for a more detailed examination.

6

Stacked Socks-and-Boxes. Suppose that inside the cardboard box, socks
are arranged in neat little stacks. Now if a player wishes to remove a sock of
his own color, he must also remove all of the socks above it as well.

Imagine a one-pile game of Stacked Socks-and-Boxes with a blue sock
on the bottom and a red sock on the top. The best move for Left is to a
position of value 0, and the best move for Right is to a position of value
1, or {0 | 1}. Let’s try to understand what this position evaluates to by
adding another blue-red stack and a lone red sock. This new game has value
{0 | 1}+ {0 | 1} − 1. Who wins? If Left moves first, he must removes one of
the blue-red stacks. Right will respond by removing the top red sock of the
remaining stack, leaving a position of value 0, which Left will lose. If Right
moves first, he will remove the top red sock of one of the stacks. Left will
respond by removing the entirety of the remaining stack, leaving a position
of value 0, which Right will lose. We see that whomever moves first shall
lose, and so {0 | 1} + {0 | 1} − 1 = 0. Therefore, {0 | 1} must equal 1

2
.

By a similar argument, we may show that each game of one-pile Stacked
Socks-and-Boxes with one blue sock buried beneath q red socks has value 1

2q
.

From this result, it is easy to characterize a game with value p
2q

as p piles
consisting of one blue sock buried beneath q red socks. What position, then,
would be evaluated to { p

2q
| p+1

2q
}? This could be a game beginning with p

piles of one blue sock buried beneath q red socks, and 1 pile of one blue sock
buried beneath q + 1 red socks, which has a value of p

2q
+ 1

2q+1 . Some simple

algebraic manipulation will show us that this equals 2p+1
2q+1 , and so

2p+ 1

2q+1
=

{
p

2q
| p+ 1

2q

}
.

Now, naturally not all games {xL | xR} will be written in one of these
canonical forms:

1. { | } = 0

2. {n | } = n+ 1

3. { | −n} = −n− 1

4. { p
2q
| p+1

2q
} = 2p+1

2q+1

To evaluate games not of these forms, we apply the Simplicity Rule.

7

Simplicity Rule. For any game

G = {a, b, c, d, ... | e, f, g, h, ...} = {XL | XR}

G has game-value x where x is the simplest number such that x > xL and
x < xR.

Suppose that each new number is constructed from previously formed
numbers. For example, 0 = { | } was the first number created and is there-
fore the simplest. Second-level numbers are all those that may be formed
from 0, namely 1 and −1. Third-level numbers are those which may be
created from 0, 1 and −1: −2, −1

2
, 1

2
and 2, respectively. Then, the sim-

plicity of a number is its ranking in this order of creation. For example, the
Simplicity Rule implies that

{−3 | 5} = 0

and

{0 | 1} =
1

2
.

The observant reader will notice that we have so far failed to address
the value of the game {0 | 0}. We cannot apply the Simplicity Rule, since
there are no numbers strictly between 0 and itself. Let’s try to understand
what happens in this game. Whoever moves first will move to a 0 position,
which loses for his opponent. Therefore, whoever moves first shall win. This
scenario does not exist in our games of Socks-and-Boxes and Stacked Socks-
and-Boxes. Again, we shall have to make a modification. We shall call this
new game Capitalist Socks-and-Boxes, and rather than blue and red socks,
we will now play with white socks, which both Left and Right may remove.
Our enigmatic game {0 | 0} now reveals itself as a one-white-sock version of
Capitalist Socks-and-Boxes. What number shall we assign to {0 | 0}? Since
the first player to move wins, this position is almost the opposite of the game
0 = { | }. But what is the opposite of 0? Since there is no obvious answer
to this question, we shall define a new type of number, which we shall write
as ∗ (pronounced star).

This new value ∗ has some unusual properties that take us out of the real
number line. Let’s explore some of these properties. A quick case analysis
of moves shows us that the sum of two games of value ∗ (i.e. a game of
Capitalist Socks-and-Boxes played with two stacks of one white sock each) is

∗+ ∗ = {0 | 0}+ {0 | 0} = 0

8

So it appears our new number is somehow half of zero, but not zero. It is
as though ∗ is a cousin of zero on a parallel number line. What if we try to
combine these number lines by looking at the value of x+ ∗ for some integer
x? It turns out that

x+ ∗ = {x | x} = x ∗ 4 (1.1)

Explanation. Let us invent yet another variation of Socks-and-Boxes. We
shall call it Socialist Socks-and-Boxes, and it will be a combination of Stacked
Socks-and-Boxes and Capitalist Socks-and-Boxes (i.e. we will play with blue,
red and white socks). Consider the game of Socialist Socks-and-Boxes played
with one stack of one white sock and one stack of x blue socks (the Finnish
game, if you will). We may describe this game as ∗+ x. Suppose Left moves
first. He shall remove the one white sock, eliminating all possible moves for
Right. Now suppose Right moves first. He has only one available move, and
that is to remove the one white sock. In both cases, all that remains is the
stack of x blue socks, and so x+ ∗ = {x | x}.

It appears that by adding a game of value ∗ to a game of Stacked Socks-
and-Boxes, we end up with a game of Capitalist Socks-and-Boxes. Capitalist
Socks-and-Boxes has the property that both players can remove any sock they
wish; in other words, Capitalist Dots-and-Boxes is an impartial game. Let
us take some time to examine Capitalist Socks-and-Boxes in greater detail.

IMPARTIAL GAMES

Quite intentionally, it turns out that Capitalist Socks-and-Boxes is precisely
equivalent to the archetypal impartial game: Nim.

Nim. Nim is played between two players. In front of both players are a
number of differently-sized stacks of coins (rather than white socks). Players
alternate turns removing any positive number of coins (including all) from
one stack. The player to remove the final coin is declared the winner.

We should first note that a stack of n coins in a game of Nim has value
{n | n} = n∗. This is because the optimal move for both players is to remove
the entire stack and win immediately. Therefore, any given game of Nim may

4It is conventional to write x + ∗ as x∗.

9

be described by the sum of the heights of its various stacks. The question
that we must now resolve is how to calculate this sum.

Remark. Any game consisting of two equally-sized stacks of coins has a
value of 0.

Proof. Suppose we play a game with two stacks of one coin each. The first
player must remove the first stack and the second player must remove the
second stack. This is a second player win, and therefore has a value of zero.
Assume that all games with equal stacks up to size n have value zero. Now
consider a game with two stacks of height n+1. The first player must remove
some number k coins from one stack. His opponent responds by removing k
coins from the other stack. We are left with two stacks of equal height n−k,
which, by our induction hypothesis, must have value zero.

This strategy of mimicking one’s opponent’s moves is formally known as
the tit-for-tat technique. Before we go about finding the value of the sum of
unequal stacks of coins, we must introduce the new concept of the mex(S).

Definition. The mex(S) is the minimum excluded number of the set S.

For example, the mex(0, 1, 2, 4, 7) = 3. We might think of S as the set of
values of possible positions that a player may move to in a somewhat unusual
game of Nim. In the previous example, S = {0, 1, 2, 4, 7}. Let us look at the
game of Nim

{0∗, 1∗, 2∗, 4∗, 7∗ | 0∗, 1∗, 2∗, 4∗, 7∗}.

This is like a normal game of Nim with one stack of 3 coins, except in addition
to removing coins, a player may also add 1 or 4 coins. However, this ability to
add coins turns out to be meaningless. Because one of the players will have
a winning strategy that does not require adding coins, any move made by
his opponent to counteract his winning strategy by adding coins can simply
be negated by removing the same number of coins. Therefore, any game
represented by a set S of nimbers is really just a disguised version of a game
of normal Nim with one stack of mex(S) coins. Now, suppose we are playing
a game of Nim with two stacks of coins of heights 1 and 2. On Left’s turn,
he may move either to position 0 ∗ + 2∗, 1 ∗ + 1∗ or 1 ∗ + 0∗, which leaves
Right with

1 ∗+ 2∗ = {0∗, 1∗, 2∗ | 0∗, 1∗, 2∗} = G = mex(0∗, 1∗, 2∗)

10

Of course, we can see that G is simply our game notation for 3∗. Let’s
generalize this result a bit:

Theorem 1.2.1. 5 The nim-sum of two nimbers a∗ and b∗ is given by the
mex(a′ ∗ + b∗, b′ ∗ + a∗) where a′∗ and b′∗ represent the sets of all nimbers
less than a∗ and b∗, respectively.

An easier technique for computing the sum of nimbers is to write each
nimber as a sum of distinct powers of two, cancel all pairs of equivalent
numbers, and calculate the sum of the remaining numbers. For example, if
we wanted to calculated 5∗+ 7∗, we would re-write this sum as 1∗+ 4∗+ 1∗
+ 2∗+ 4∗, cancel the pairs of 1∗’s and 4∗’s, and be left with 2∗. This process
is the same as calculating the binary XOR of the numbers, but is simpler
than writing each number out in binary notation.

THE SPRAGUE-GRUNDY THEOREM

We have now arrived at a point where we can understand the Sprague-Grundy
Theorem, which states that all impartial games may be reduced to the sums
of games of Nim. This result will be invaluable in our analysis of Dots-and-
Boxes.

Sprague-Grundy Theorem. Every impartial game may be characterized
as the sum of games of Nim with additive moves (as we saw above in our ex-
planation of the mex). Because every game with additive moves is equivalent
to a normal game of Nim (due to the mex rule), each impartial game may
be written as the sum of nimbers. Furthermore, because nimbers are closed
under addition, every impartial game may be characterized as a one-stack
game of Nim.

Explanation. Suppose we are playing the simplest version of some arbitrary
impartial game G. In this simplest version, there are no available moves to
be made; whoever moves first immediately loses. This is equivalent to the
game of Nim with no coins. Now suppose that we are playing a slightly
more complex version of G. Here, a player may end the game in one move,
or extend the game by making some sort of additive move. This version is
equivalent to the game of Nim with one stack of one coin. By continuing

5A formal proof of this result may be found in Winning Ways.

11

to increment the size of G and applying the mex rule to account for the
additive moves, we can recursively construct nimbers for each position. We
shall see examples of this in the following section.

TWO MORE COMPLICATED GAMES

Let us look at two examples of how nimbers can help us solve other impartial
games.

KAYLES6

Kayles. Kayles is a two-player impartial game played with a row of bowling
pins and a ball. Players take turns rolling the ball at the pins. In our
contrived universe, players are talented enough to either knock down one pin
or any two adjacent pins. As soon as someone is unable to knock down a
pin, that player is declared the loser.

Suppose we decide to play a game of Kayles with 11 pins (K11). Let us
consider the possible outcomes after the first player rolls his ball. Either he
knocks over a pair of adjacent pins, leaving positions

K9, K1 +K8, K2 +K7, K3 +K6, or K4 +K5;

or he knocks over one pin, leaving positions

K10, K9 +K1, K8 +K2, K7 +K3, K6 +K4, or K5 +K5.

Our analysis now requires that we determine nimbers for each of these smaller
positions, and calculate the mex of all these nimbers. The resulting nimber
will represent the value of K11. How might we tackle this daunting task?

Our only solution is to build up nim-values of progressively larger boards
recursively. We begin with positions K0 = 0∗ and K1 = 1∗. From here, way
may determine the value of

K2 = mex(K0, K1) = mex(0∗, 1∗) = 2∗
6In this section, we will provide an overview of the analysis of Kayles. Certain calcula-

tions are proofs are skipped, as they tend to direct attention away from our ultimate goal
of understanding Dots-and-Boxes. As in previous sections, the interested reader is directed
to Winning Ways for your Mathematical Plays Vol. 1 for a more detailed explanation.

12

n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 1 4 3 2 1 4 2 6
12 4 1 2 7 1 4 3 2 1 4 6 7
24 4 1 2 8 5 4 7 2 1 8 6 7
36 4 1 2 3 1 4 7 2 1 8 2 7
48 4 1 2 8 1 4 7 2 1 4 2 7
60 4 1 2 8 1 4 7 2 1 8 6 7
72 4 1 2 8 1 4 7 2 1 8 2 7
84 4 1 2 8 1 4 7 2 1 8 2 7
96 4 1 2 8 1 4 7 ...

Table 1.1: The periodicity of Kayles

K3 = mex(K1, K2, K1 +K1) = mex(1∗, 2∗, 0∗) = 3 ∗ .

Eventually, we arrive at

K11 = mex(2∗, 4∗, 5∗, 0∗, 3∗, 0∗, 1∗, 0∗, 2∗, 5∗, 0∗) = 6 ∗ .7

This tells us that K11 is equivalent to the game of Nim with one stack of
6 coins. The first player may win this game by removing the entire stack;
he must reduce 6∗ to 0∗. What Kayles move accomplishes this? We have
seen the nim-values for all subpositions of K11 in our calculation of the mex
above. Had we included the calculations of K4 through K10, we would know
that the nim-values 0∗ refer to positions K8 + K1, K7 + K2, K5 + K5 and
K6 +K3.

Although it is convenient to know the winning moves for K11, it would
be far more useful to know the winning values for Kn. Just as we built up a
table for K11, we might also build up a larger table. This is exactly what we
have done in Table 1.1, borrowed from Winning Ways for your Mathematical
Plays, which illustrates the nim-values of Kayles for K0 through K102 and
shows a regular periodicity of 12, starting from n = 70.

DAWSON’S KAYLES8

7Further explanation and more detailed calculations may be found in Winning Ways.
8This name comes from another game, called Dawson’s Chess. We shall not discuss it

here, but its rule and analysis may be found in Winning Ways.

13

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 1 1 2 0 3 1 1 0 3 3 2 2 4 0 5
17 2 2 3 3 0 1 1 3 0 2 1 1 0 4 5 2 7
34 4 0 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5
51 5 2 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7
68 4 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5
102 5 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 ...

Table 1.2: The periodicity of Dawson’s Kayles

Dawson’s Kayles. Dawson’s Kayles is a simpler version of Kayles where
players are only permitted to knock down two adjacent pins.

In our analysis of Dawson’s Kayles, we shall proceed precisely as we did
in regular Kayles, first by building up nim-values one by one, and then by
looking for some emergent periodic pattern. We begin with D0 and D1 (that
is, games consisting of 0 and 1 pins, respectively), both of which equal 0∗,
since only two pins may knocked over. From here, we may calculate

D2 = mex(D0) = 1∗

D3 = mex(D1) = 1∗

D4 = mex(D2, D1 +D2) = 2∗

and so on, eventually building Table 1.2.
As we can see, Dawson’s Kayles, after correcting for a few extraneous

values (written in bold), settles down into a period of 34. The explanation
for our certainty in assigning this periodicity is essentially the same as it was
for Kayles (see above).

We are now equipped to tackle Dots-and-Boxes!

DOTS-AND-BOXES

Dots-and-Boxes. Dots-and-Boxes was a very popular game amongst my
primary school friends, and maybe yours as well. It is played between two
players on a square grid of dots. Players alternate turns connecting vertically
or horizontally adjacent dots. Whenever a square is formed, the player to
form it tallies a point, writes their initial in the square and moves again.

14

The player with the majority of points (initialized squares) is declared the
winner9.

How might we go about winning this game? There are various levels
of strategic complexity at which Dots-and-Boxes may be played. We shall
analyze these strategies from the most basic to what might seem like the
intractably complicated.

THE NAIVE APPROACH

Suppose we are playing a 4-by-4, 16 box game. The beginning play is rather
dull, as players alternate connecting dots without forming the fatal third
edge that will give away a square to their opponent. Inevitably, the game
eventually reaches a state where one poor soul must form the third edge,
providing his opponent with a cascading chain of moves, as shown below.
Once these boxes have been formed, his opponent is then forced to form the
third edge of some other box, and the roles switch. This process continues
until all of the boxes are completed.

Each player, when required to draw the third edge of a box, elects to draw
the one that supplies his opponent with the fewest number of boxes possible.
For example, in the game in Figure 1.1, the first chain of boxes has length 4,
the second has length 5, and the last has length 7. This gives the first player
to capture a chain (whom we shall later refer to as the controlling player)
a victory with a score of 11 to 5. Can the controlling player do better than
this?

DOUBLE-DEALING AND LONG CHAINS

Let us consider the same game as in Figure 1.1, now played against a more
conniving controlling player (Figure 1.2).

We see that rather than take all four available boxes in the first chain, the
conniving controlling player took just two, and left two for his opponent. This
move forced his opponent to open the next chain, where again the conniving
player left the final two boxes. Once more, his opponent was forced to open
the final chain, which was entirely taken by the conniving player. Let’s tally
up the scores:

9This section relies heavily on the work done by Dr. Elwyn Berlekamp. A more detailed
analysis of the game can be found in his book The Dots and Boxes Game: Sophisticated
Child’s Play [3].

15

Figure 1.1: A naive game of Dots-and-Boxes

16

Figure 1.2: The conniving player’s double-dealing strategy

17

Conniving player Opponent

4− 2 2
5− 2 2

7 0
12 4

The conniving player has improved his overall score by one point. More
importantly, however, the controlling player who follows this strategy will
serve up a mere 2(n − 1) boxes to his opponent from a position with n
chains.

Let us take a moment to define more precisely this notion of chains. From
here on out, we shall use long chains to refer to chains of 3 or more boxes
that may be captured by a single player in one turn. We limit the length of
long chains to at least 3 because these are all the chains to which a conniving
player might apply the double-dealing strategy we saw above.

Clearly, it is advantageous to be the controlling player. What strategies
can we use to gain control? The most simple strategy (which I have found
helpful when playing some online Dots-and-Boxes AIs) is the

Long Chain Rule. In order to become the controlling player, try to make
the number of initial dots plus eventual long chains even if you are Player 1
and odd if you are Player 2.

Proof. In Dots-and-Boxes, the player who has control in the endgame will
also be the player to complete the final box. By calculating the number of
turns in a given game, we may determine who will make the last move and,
consequently, who has control in the endgame. This number happens to be
a function of the number of starting dots and the number of eventual long
chains. Suppose we are playing a game on a grid of n×m dots (that is, an
(n− 1)(m− 1)-box game). The number of turns in the game depends on the
number of moves in the game, the number of boxes in the game (since each
move that completes a box does not end a turn), and moves that complete
two boxes simultaneously (double-dealt moves). More specifically,

Turns = Moves− Boxes + Double-dealt moves.

But we already know that there are (n − 1)(m − 1) = mn − n − m + 1
boxes in the game and we may easily calculate the number of moves to be
n(m− 1) +m(n− 1) = 2nm− n−m. We now have

Turns = 2nm− n−m− (mn− n−m+ 1) + Double-dealt moves

18

= mn+ 1 + Double-dealt moves.

Since we started with nm initial dots, the final result is

Turns = Dots + Double-dealt moves + 1.

Finally, recall that in a typical game, the number of double-dealt moves is
precisely one less than the number of long chains10. But if this is true, then

Turns = Dots + Long chains.

However, this is a bit of a vague piece of advice. How can we articulate
this strategy in more precise terms?

STRINGS-AND-COINS

Let us begin by presenting an alternative way to describe Dots-and-Boxes. In
this dual form, called Strings-and-Coins, each prospective box is replaced by
a coin, and each undrawn edge is replaced by a string. A move in Dots-and-
Boxes corresponds to cutting a string in Strings-and-Coins, and the capture of
a box corresponds to the removal of a completely detached coin. All the same
rules of Dots-and-Boxes apply. Translating Dots-and-Boxes into Strings-
and-Coins can be useful for assessing the location of long chains and, as we
shall see, invaluable once we develop a more complex theory of the game.
Additionally, Strings-and-Coins removes the restrictions that the Dots-and-
Boxes grid places upon us. Any graph11 can be translated into a game of
Strings-and-Coins and analyzed.

NIMSTRING

As you may recall, our toolkit for solving games is really only suited for impar-
tial combinatorial games, and unfortunately, Dots-and-Boxes (and Strings-
and-Coins) do not quite apply. Although impartial, they do not follow the
normal play convention. It order to satisfy this constraint, we must tweak
them ever so slightly and hope that whatever information we glean from this

10The double-dealing strategy leaves a double-dealt move after every long chain except
the final one.

11For those unfamiliar, a graph is a number of nodes connected by lines.

19

Figure 1.3: A Dots-and-Boxes position and its Strings-and-Coins dual

new game will still provide us with helpful insight. This new game is called
Nimstring, and differs from Strings-and-Coins only in its manner of scoring.
Rather than claiming the minority of coins, the loser in Nimstring is the
player who cannot make a legal move on his turn. In most cases, this hap-
pens immediately after a player removes the final coin, as the rules require
that he make another turn when there are no remaining strings to be cut.
(It is conceivable that a Strings-and-Coins game might contain a string that
is unattached to any coin, but as this has no parallel position in Dots-and-
Boxes, we shall ignore this possibility.) As our first order of business, we
shall show that

Claim. Nimstring is just a special case of Strings-and-Coins.

Proof. Suppose we are presented with a Nimstring position G for which we
have some winning strategy. We may then construct a Strings-and-Coins
position G′ by adding a long chain of coins to G such that the number of
coins in the long chain exceeds the number of coins in G. The winning
strategy for the game G′ is exactly that of G, because the loser of Nimstring
must cut the first string of the long chain, thereby providing us with the
majority of the coins.

For wider application, we might augment this proof to allow for n long
chains and m long loops, rather than one giant chain. In this case, as long
as the number of coins in these chains and loops exceeds the number of
coins in G plus 4n+ 8m, the winning Nimstring strategy applies. In general,
when applying Nimstring analysis to a game of Dots-and-Boxes, one should
simultaneously aim to win the corresponding Nimstring game, and leave a
good number of long chains laying about. As it stands, we shall direct our
focus on winning at Nimstring.

20

Figure 1.4: The six unique types of capturable coins

Our goal here, as it was with other impartial games, is to determine
nim-values for every Nimstring position, and hopefully discover some sort of
periodicity. As we shall see, this is going to be a monumental task.

In Nimstring, as in Dots-and-Boxes and Strings-and-Coins, there are two
different types of moves: those that capture a coin (or box) and those that
do not. Let us take a look at the possible circumstances of capturing moves
(Figure 1.4).

In Figure 1.4, each ellipse above the pictured coins represents the rest of
the game (G) of Nimstring, and dashed lines indicate additional strings that
may or may not be present.

Claim. In the first four positions, the player to move might as well capture
the available coins, as doing so will in no way adversely affect his strategy.

Explanation. Suppose the player to move has a winning strategy that involves
moving somewhere in the game of Nimstring without capturing the available
coins. If he chooses to capture these coins, this winning move with still be
available to him, so there is no reason for him not to do so.

Claim. In games with the last two types of capturable coins, the player to
move is guaranteed a winning strategy.

Proof. Suppose the player to move has a winning strategy in G. In this
case, he would do well to capture the free coins before moving on to his

21

winning strategy in G. His winning move in G will be equally available
before and after these captures. Now suppose that the player to move will
lose by moving in G. He can avoid this circumstance by cleverly stealing
his opponent’s strategy and forcing him to move in G first. He does this by
cutting the string of the coin with degree 2 and thereby double-crossing his
opponent.

From this point onwards, we shall refer certainly winning positions and
moves that lead to such positions as loony and label them with a %.

Recall that our technique for solving other impartial games was to find
the mex of all subpositions after a move was made. This technique is no
different with Nimstring, but is made far more complex by the sheer number
of possible subpositions after a given move. Nevertheless, we shall present
the algorithm for finding a position’s nim-value, before moving to more prac-
ticably applicable options.

1. The Nimstring position with no available strings to cut has value 0∗.

2. The position with capturable coins of the first type has the same value
as the position after those coins are captured.

3. The position with capturable coins of the second type has value %.

4. The position with no capturable coins has value equal to the mex of the
values of its subpositions.

Explanation. If a position has no strings to cut, then the player whose turn
it is cannot move, and subsequently loses. As we have shown above, there
is no reason not to take capturable coins of the first type, so any move in a
position with these coins ends in the same position as a move made without
these capturable coins. As defined above, positions with capturable coins of
the second type are loony.

At this point, you might ask,“Now what? We’ve solved Nimstring, so let’s
just translate these results to Dots-and-Boxes and be done.” Unfortunately,
this is not quite accurate. Although we have a formula for calculating the
nim-values of any Nimstring position, there is no current research that has
developed a complete documentation of all nim-values for all positions. This
is likely due to the fact that the calculation of nim-values runs in O(n!) time
on games with n strings, which is simply not feasible for large n. Despite this
disappointing setback, we shall persevere, now with the help of computers!

22

THE PROGRAM

OTHER GAMES

Apart from our cursory overview of combinatorial games in the beginning of
this paper, our focus has been all but entirely directed on the theory of impar-
tial games. For the sake of balance, we shall spend a moment here discussing
other types of games including, of course, Dots-and-Boxes. Complementing
impartial games, the other major class of combinatorial games are those for
which opposing players move unique pieces. These games are called partizan
games, and include many well-known classics like chess, checkers, go, and
tic-tac-toe. The theory of partizan games is not nearly as well-developed
and clean as that of impartial games, nor is it the focus of this paper. How-
ever, there are certain partizan games that have garnered the attention of
computer scientists and programmers, and it is the structure of programs
designed to play these games that we shall imitate as we design our program
to play Dots-and-Boxes. Chess is the archetypal example of such a game.

Chess is notoriously difficult to fully analyze, as there are unfathomably
many possible games to trudge through in order to dig up a winning move.
Mathematician Claude Shannon, in his influential 1950 paper Programming
a Computer for Playing Chess, placed a conservative lower bound on the
number of possible chess games at 10120, well beyond the practical limitations
of computing. As a result, chess programs were designed to look a number
of moves ahead and then employ a heuristic function to assess the position,
before passing that heuristic value back to the start. As this area of study
increased in popularity, a number of improvements were made to this basic
structure, allowing for a greater depth of exploration before the heuristic was
called.

As it happens, the game of Dots-and-Boxes presents an similar challenge
when it comes to analysis. A starting board with n × m dots has, at the

23

beginning, a total of 2nm−n−m possible moves, with this value decreasing
by 1 for every cut string. This means that the number of possible games to
be played is (2nm − n − m)!, a ghastly number for even moderately small
n,m.1 It is for precisely this reason that we employ the same techniques as
early chess programmers in our Dots-and-Boxes program.

Before we dive in, we should make a brief note about some terminology.
The following algorithms are designed to efficiently search and prune a game
tree. The game tree is a structure used to define a particular game. It begins
at a certain game state, and branches off for every possible sub-game after a
move is made. The leaf nodes are the final game states, in this case when all
boxes are claimed. To prune the game tree is to remove a certain branch of
moves by determining their outcome to be less desirable. We will describe the
efficiency of some algorithms using the notation O(n). This is conventional
in computer science and can be thought of as the number of options the
program must explore on a given input size n.

THE BASIC STRUCTURE

The most simple algorithm for searching ahead in a game tree is the minimax
algorithm. It is described in pseudocode below:

1To be perfectly clear, a game played on a 4 × 4 board has 24! = 6.2 × 1023 possible
game states.

24

input : CurrentBoard, depth, true
output: heuristic value of CurrentBoard

1 Function Minimax(node, depth, MaximizingPlayer)
2 if depth is 0 or node is terminal then
3 return heuristic value of node;
4 end
5 if MaximizingPlayer then
6 BestV alue← −∞;
7 foreach child of node do
8 v ←Minimax(child, depth− 1, false);
9 BestV alue←max(v,BestV alue);

10 end
11 return BestValue;

12 end
13 else
14 BestV alue←∞;
15 foreach child of node do
16 v ←Minimax(child, depth− 1, true);
17 BestV alue←min(v,BestV alue);

18 end
19 return BestValue;

20 end

This algorithm explores all game states down to a given depth, heuristi-
cally evaluates each one, and then works backwards to determine what move
will direct the player towards the optimal game state. Although this works,
it is clearly not ideal, as it must search n!

(n−depth)! total game states before
coming to a conclusion. One way to cleverly modify the minimax algorithm
is to implement alpha-beta pruning.

25

input : CurrentBoard, depth, true, -∞, ∞
output: heuristic value of CurrentBoard

1 Function AlphaBeta(node, depth, MaximizingPlayer, α, β)
2 if depth is 0 or node is terminal then
3 return heuristic value of node;
4 end
5 if MaximizingPlayer then
6 v ← −∞;
7 foreach child of node do
8 v ←max(v, AlphaBeta(child, depth− 1, false, α, β));
9 α←max(α, v);

10 if β ≤ α then
11 break;
12 end

13 end
14 return v;

15 end
16 else
17 v ←∞;
18 foreach child of node do
19 v ←min(v, AlphaBeta(child, depth− 1, true, α, β));
20 β ←min(β, v);
21 if β ≤ α then
22 break;
23 end

24 end
25 return v;

26 end

The idea here is to avoid looking down branches that will inevitably be
ignored due to better available options. For example, suppose the maximiz-
ingPlayer can choose between one game state evaluated at 6 and another
game state for which the minimizingPlayer can evaluate to be either 2 or
some yet unexplored option n (Figure 2.1). We needn’t investigate option
n because we know that the minimizingPlayer will provide no option better
than 2, and the maximizingPlayer already has the better choice of 6. In
the worst case scenario, if game states are searched so that no search op-
tions are cut off, alpha-beta pruning works exactly as efficiently as minimax.

26

6

6

≤ 2

2 n

Figure 2.1: A simple game tree with αβ pruning.

However, in an optimal scenario, where game states are searched in an order
that promotes the most cut-offs, roughly half of the game states at each level

are ignored, leaving us with an operating time of approximately O(
n
2
!

(n−depth)!).
We shall use an implementation of alpha-beta pruning in our Dots-and-Boxes
program.

Why stop here? We are still at the whim of the order in which we examine
game states. How can we ensure that we take full advantage of minimax
algorithm?

ACCOUNTING FOR SPACE AND TIME

Here we will introduce two of the techniques used to maximize time efficiency
in game algorithms. The author’s implementation of these techniques, along
with all other code, is included in the appendix.

TRANSPOSITION TABLES

In many games, and especially Dots-and-Boxes, it commonly happens that
previously explored game states show up in multiple places in a search tree.
One can easily imagine a circumstance, for example, where a Dots-and-Boxes
player first draws a horizontal line in the upper left of the playing board,
and his opponent responds by drawing a vertical line in the same upper left
corner. These two moves might easily be reversed and still lead to the same
outcome, requiring the final game state to be explored an additional time.
More generally, a game state reached after n moves could have been reached
in (n − 1)! − 1 other ways, leading to a great deal of redundancy in our

27

alpha-beta algorithm. To avoid this situation, we add a sort of dictionary at
the beginning of our algorithm that contains all of the previously explored
game states. Prior to beginning any search, the algorithm checks if the game
state that it is currently examining is in the table. If so, it simply spits out
that state’s associated heuristic value and moves on.

This dictionary is called a Transposition Table, and it uses an ingenious
trick to reference its entries. When a new board is created at the beginning
of a game, each possible move is assigned a unique 64-bit string, called a
Zobrist hash. Every time a move is made, its corresponding 64-bit string is
XORed2 onto the current value of the board. This new board hash is then
used to index the board’s heuristic value (along with some other information)
in a HashMap. When we want to check whether a board position has been
previously explored, we simply call the HashMap with the board position’s
Zobrist hash. If we return a value, it is the value of that board position.
Otherwise, it has not yet been explored.

In the author’s implementation, there was a small hiccup in this process.
It happens that in Dots-and-Boxes, identical game states may not have iden-
tical values, as the overall scores may differ. To prevent the wrong heuristic
value from being pulled from the Transposition Table, the author added an-
other condition that required not only the Zobrist hash to match, but also
the current score. This reduced the efficacy of the Transposition Table, but
not too significantly.

ANALYSIS TECHNIQUES

At this point, we still need to implement a heuristic function. How might
we have the computer determine which game state is the most preferable?
More directly, how can we quantify in a simple series of steps the thought
process behind choosing what move to make? When do we know if a position
is “good” or “bad?” In the previous section, we found that the Long Chain
Rule was a pretty simple metric that worked surprising well. We also learned
about Strings-and-Coins and Nimstring and nimbers, but nimber calculation
turned out to take O(n!) time, which we simply cannot handle. The Long
Chain Rule worked well, though. Is there a way for us to apply it?

2XOR is a binary operation that acts like addition without carrying. It is also its own
inverse.

28

There are a few significant issues with implementing a heuristic based on
the Long Chain Rule:

1. Oftentimes we, as humans, see the inevitable formation of a long chain
long before it is completed. How can we communicate these nuances
to a computer program?

2. Suppose we reach a position where the parity of long chains is certain,
but the precise number is not. How can we holistically determine the
parity without simply counting long chains?

3. What type of algorithm can effectively find the parity of long chains
without wasting so much time that the benefit of using a heuristic is
lost?

The first two points can, to an extent, be shunted aside, if we are willing to
have an imperfect heuristic3. Even in the most brutish of techniques, where
we choose only to evaluate positions that are strictly composed of long chains,
we will occasionally benefit from our heuristic. The truly distressing question
is whether the time we use to actually determine the heuristic pays off (in
the form of a more competitive AI), or whether it is better spent on a deeper
search. We shall attempt to quantify the difference between these scenarios
in the following paragraphs.

One simple way to search for long chains is to start on a coin with degree
1 and follow the path of coins it is connected to until either (a) we reach a
coin with degree > 2 or (b) we reach another coin with degree 1. If (a), then
we discard all visited coins and move on to the next coin with degree 1. If
(b), then we discard all visited coins, count one long chain (if we looked at
≥ 3 coins), and move on to the next coin with degree 1. Fortunately, this is
not a particularly time-intensive process; if we start with a board of n coins,
we need only look at each one once, leaving us with a worst case scenario of
O(n). However, we must run the heuristic for every node at some depth d,
so we must actually evaluate (in a worst case scenario) n!

(n−d)! total boards.

This puts the upper bounded cost of our heuristic at roughly n(n!
(n−d)!); not

a negligible price.
How much deeper can we search for the price of our heuristic? This

depends heavily on the starting depth. Each additional increase in depth d

3Which we should be, since a heuristic by definition need only be adequate.

29

adds
n!

(n− d− 1)!
− n!

(n− d)!

game states to check. If d ≈ 1
n
, then this number is quite large, but for values

of d either near n or near 0, this number is small. Clearly, the benefit of this
sort of heuristic is up-in-the-air.

The author elected to use a simple heuristic that returns the difference in
score between the computer and its opponent. This heuristic functions well,
although it results in some very predictable behavior during the opening
moves. Because the author has not yet implemented a move-ordering heuris-
tic, if no points are scored during the computer’s assessment of the game,
it simply goes about cutting strings clockwise around coins, starting in the
SW corner of the board and moving northwards row by row. This does not
appear to be a significant impediment, although it does make the computer
look rather foolish. In order to augment this simple heuristic, the author has
also included a function that increases the depth of search depending upon
the number of moves remaining in the game. This allows the computer to
play quickly during the low-scoring opening, and still search deep into the
tree in the later stages of the game.

30

WHAT ABOUT 3D?

HOW SHOULD WE PLAY?

There are three possible interpretations of what it means to play three-
dimensional Dots-and-Boxes. We shall introduce all three and discuss how
each differs from traditional Dots-and-Boxes.

1 string, ≥ 2 coins. We play on a cubical grid of dots. Players alternate
turns connecting adjacent dots. Whenever a square is completed, the player
to complete the square tallies a point and moves again. Whoever scores the
most points wins.

At first glance, this version appears trivially equivalent to traditional
Dots-and-Boxes. However, it is complicated by the presence of single moves
that complete more than two boxes (see Figure 3.1). We shall see that this
makes the process of gaining control significantly more difficult.

1 string, 2 coins. Again, we play on a cubical grid of dots. However,
rather than connecting adjacent dots, players take turns shading in squares
(or faces). Whoever completes shading in all six faces of a cube tallies a
point and moves again. The game ends when all faces are shaded. Whoever
has the most points wins.

Figure 3.1: Scoring four points in one move.

31

Figure 3.2: Four birds, one stone.

Figure 3.3: Mapping simple 3D Dots-and-Boxes to Strings-and-Coins.

As we shall see in the following section, this version can be reduced to a
simple game of Strings-and-Coins in three dimensions. There are no signifi-
cant changes.

≥ 1 string, ≥ 2 coins. We play on a three-dimensional grid of dots. Players
alternate turns connecting adjacent dots. When all twelve edges of a cube
are completed, the player to do so tallies a point and moves again. The game
ends when all edges are drawn. The player with the most points wins.

This version is the most complicated. If we try to create an analogous
Strings-and-Coins game, we find many examples of coins that are connected
by up to four strings. We may also find circumstances where cutting one
string corresponds to capturing four coins. An example of this scenario is
shown in Figure 3.2.

THE TRIVIAL CASE

Let us take a moment to fully understand the 1 string, 2 coins version of
3D Dots-and-Boxes. This is easiest to comprehend as an analogue Strings-
and-Coins game (Figure 3.3). The mapping we shall use is cubes to coins
and faces to strings.

32

As in traditional Dots-and-Boxes, our objective is to be the controlling
player when only long chains remain. We may accomplish this by imple-
menting a slightly modified version of the Long Chain Rule.

Long Chain Rule (version 2). Suppose we are playing 3D Dots-and-Boxes
on an n×m× l rectangular prism. If exactly two of {n,m, l} are odd, then
Player 1 gains control by making the number of eventual long chains even,
and Player 2 gains control by making this number odd. Otherwise, Player 1
gains control by making the eventual number of long chains odd, and Player
2 gains control by making this number even.

Proof. As was the case in our original proof of the Long Chain Rule, we
set out to determine who shall make the final move. The expression for the
number of turns in this version of 3D Dots-and-Boxes is

Turns = Moves− Cubes + Double-dealt moves.

The number of moves is given by the number of faces, or

3nml − 2nl − 2nm− 2ml + n+m+ l.

The number of cubes is simply

(n− 1)(m− 1)(l − 1) = nml − nm− nl −ml + n+m+ l − 1.

Taking the difference,

Turns = 2nml − nm− nl −ml + 1 + Double-dealt moves.

Recall that each long chain in the endgame corresponds to a double-dealt
move, except the last one, which the controlling player takes completely.
Therefore, double-dealt moves = long chains− 1, and so

Turns = 2nml − nm− nl −ml − Long Chains.

We want to find the parity of this number. If all of {n,m, l} are even, then
the parity of turns depends on the parity of long chains. This is the same
if just one of {n,m, l} is odd. If two of {n,m, l} are odd, then the parity of
turns is the opposite of the parity of long chains. Finally, if all of {n,m, l}
are even, then the parity of turns is again the same as that of long chains.
To gain control, we wish to make the final move, so as the first player, we
want the parity of moves to be odd, and as the second player we want the
parity of moves to be even. This is accomplished by arranging the proper
number of long chains.

33

Of course, we should also examine whether our constructions for Nim-
string apply to this version of 3D Dots-and-Boxes. Recall that in traditional
Nimstring, there are six types of moves with capturable coins. If these moves
are the same in the Nimstring analogue of this version of 3D Dots-and-Boxes,
then our algorithm for determining the nimber of a specific position will re-
main the same, and the strategies we have previously discussed will apply.

Proposition. All capturable coins in the Strings-and-Coins version of 1
string, 2 coins 3D Dots-and-Boxes are of one of the types pictured in
Figure 1.4.

Proof. Suppose we have a capturable coin. That coin may either be isolated
(Figure 1.4 (a)) or connected to another coin. If it is connected to another
coin, the coin to which it is connected may have one (Figure 1.4 (b)), two
(Figure 1.4 (c),(e) and (f)), or three or more (Figure 1.4 (d)) strings attached
to it. If it is attached to a coin with two strings, one of those strings may
either go to the ground (Figure 1.4 (e)), to a coin with one string (Figure 1.4
(c)), or to a coin with at least two strings (Figure 1.4 (f)). These are all the
possibilities, and each is depicted in Figure 1.4.

DEALING WITH MULTIPLES

Let us try to unravel the two complicated versions of 3D Dots-and-Boxes.
We shall begin with the 1 string, ≥ 2 coins version.

1 STRING, ≥ 2 COINS

It will be helpful in our analysis to have a Strings-and-Coins analogue for
this version. Unfortunately, it is rather difficult to convey the idea of one
string connecting multiple coins in a visually clear manner. In Figure 3.4 we
have given the Strings-and-Coins analogue for a game played on a cube. In
general, a larger game is equivalent to a field of octahedra stacked on top of
each other (Figure 3.5).

There is one significant problem with this analogue. Recall from Figure
3.1 that certain moves in this version complete up to four squares. Such
a move is analogous to a string that connects more than two coins. In
Figure 3.5, these strings are represented by the red, blue, green and pink
lines emanating from the junction coin between two octahedra. For example,

34

Figure 3.4: Another Strings-and-Coins analogue.

Figure 3.5: A field of octahedrons.

35

Figure 3.6: A diagram of a loopy endgame.

cutting a string attached to the coin just above the “3.5” in “Figure 3.5”
would correspond to removing both lines of a given color (say, orange). Also,
note that there are no strings attached to the ground. This means that there
are no moves that affect only one face.

Is there an equivalent Long Chain Rule for 1 string, ≥ 2 coins 3D
Dots-and-Boxes? Some difficulties arise when determining the number of
turns in this game. Because we have moves that remove both 3 and 4 coins,
the expression for the number of turns becomes a bit more complicated. We
now have

Turns = Moves− Faces + 2-dealt + 2(3-dealt) + 3(4-dealt)

where n-dealt refers to a move that removes n coins. We may calculate the
value of moves− faces and simplify to

Turns = nm+ nl +ml − n−m− l + (multiple-coin strings)

where multiple-coin strings = 2-dealt+2(3-dealt)+3(4-dealt), but we haven’t
a way to put this expression in terms of long chains.

Let us take a step back and examine what the endgame of 1 string, ≥
2 coins 3D Dots-and-Boxes might look like. Because no strings connect to
the ground, the endgame is comprised not of long chains, but of a network
of long loops. Figure 3.6 presents a schematic illustration of a possible loopy
endgame.

Suppose we are playing a game on a 4×4×4 cube (shown in Figure 3.7).
We might think of this game as two nested games: one played on the outer
surface of the 4×4×4 cube (shaded blue) and the other on the outer surface of
the internal 2×2×2 cube (shaded red). Both of these games have endgames
essentially equivalent to traditional Dots-and-Boxes, with the exception that

36

Figure 3.7: The different parts of a game.

rather than ending in long chains, they end in long loops. Two of these long
loops are represented by the horizontal chains in Figure 3.6. Of course, the
internal 2×2×2 cube and the external 4×4×4 cube are connected by other
faces. Some of these faces, which we shall refer to as supports, are illustrated
in green in Figure 3.7. They correspond to the coins in between the two long
loops in Figure 3.6.

Theorem. The only 2-coin strings in 1 string, ≥ 2 coins 3D Dots-and-
Boxes are those that connect coins corresponding to adjacent squares on dif-
ferent faces of the outer board.

Proof. All faces in 1 string, ≥ 2 coins 3D Dots-and-Boxes are either parallel
or orthogonal to each other. In three dimensions, the greatest number of
orthogonal faces around an edge is 4. In this scenario, each face points in
one of the cardinal directions (N, E, S, W). All other arrangements of faces
about an edge are:

1. NE (or SE, SW, NW)

37

W

N

E

S

Figure 3.8: The cardinal directions of 4 faces about an edge.

2. EW (or NS)

3. NES (or ESW, SWN, WNE)

Of these scenarios, only cases 1 and 2 represent circumstances where two
coins are attached with one string (i.e. two faces are adjoined by one edge).
Case 1 is what we find in traditional Dots-and-Boxes. It does not extend to
three dimensions, since the z-axis will add an additional face and turn it into
case 3. We are left with case 2, which only exists between adjacent squares
on different faces of the outer board.

Theorem. All connections from support coins to the outer board are 3-coin
strings, and two of these three coins lie on the outer board.

Proof. This is an example of the modification that takes place when we add
the third dimensional axis to a 2D game of Dots-and-Boxes (i.e. the shift
from case 1 to case 3).

Theorem. All connections between any two coins not on the outer board are
4-coin strings.

Proof. We have seen that case 1 does not occur in three dimensions, and
case 2 is only found between adjacent squares on different faces of the outer
board. Case 3 must have 180 degrees between two faces, a situation which
only exists on the outer face. By elimination, the only remaining scenario is
to have four faces adjoined about one edge (i.e a 4-coin string).

What do these results tell us about the types of n-dealt moves, and con-
sequently number of turns, in a game? Obviously, a 2-dealt move (previously

38

called a double-dealing move) is the best of all n-dealt moves, since it pro-
vides your opponent with the fewest boxes. Therefore, we should ask whether
there exists any circumstance where a player might be forced to make a 3 or
4-dealt move in order to maintain control during the endgame. What would
such a scenario look like?

Recall that the endgame consists of a tangled web of interconnected loops.
Some of these loops are attached by 3 and 4-coin strings, while others are
attached at junction coins (i.e., coins with degree > 2). The distinction
between these two cases is important. A junction coin is the terminating
point of a long loop. When one of its strings is cut, no coin is removed, and
the turn ends. A 3 or 4-coin string, however, is like an unusual fork in the
road where the traveller can choose to walk down both paths simultaneously.
This means that a move cascades along 3 and 4-coin strings until it eventually
bumps into junction coins (or itself, if it is one long loop) and terminates.

Because of 3 and 4-coin chains, a long chain in a given loopy endgame
might thought of as a branching tree, where rather than having leaves, the
terminus of each branch is either grafted back onto itself at the base of the
trunk (case 1) or grafted onto an adjacent tree (case 2). Let’s examine the
first of these scenarios:

Case 1. We immediately encounter a scenario that would necessitate the
forfeit of a 3-coin chain in order to maintain control. Suppose we are playing
a game on the board in Figure 3.9 (a). This has a corresponding Strings-and-
Coins game, shown in Figure 3.9 (b). Whatever move our opponent makes,
we wish to maintain control by forcing him to make the final move in this
loop and open the next loop. Let’s consider the possible scenarios:

• If he cuts one of the 3-coin strings, we should respond by capturing two
of the hanging coins in the upper square, leaving behind a 2-coin string
and a 3-coin string.

• If he cuts one of the 2-coin strings, we should respond by capturing the
two available coins, again leaving behind a 2-coin string and a 3-coin
string.

In both cases, we can guarantee that our opponent will cut a 3-coin string
and get at least 3 points.

There is no simple way to determine the precise number of circumstances
that would force a controlling player to make 3 or 4-dealt moves in the

39

Figure 3.9: A 3-coin forfeit.

endgame. Consequently, the number of turns in a game is no longer exclu-
sively dependent on the number of long chains and starting dots, and the
Long Chain Rule, if it exists, is non-trivial to deduce and apply. Although
this paper will not address this question further, we present suggestions for
further research at the end of the following section.

NIMSTRING: 1 STRING, ≥ 2 COINS

Let’s determine an algorithm for finding the nim-value of a 1 string, ≥
2 coins game of Dots-and-Boxes. There are two type of capturable boxes
(coins) in a game of Dots-and-Boxes (Strings-and-Coins):

1. canonical captures;

2. loony options.

A canonically capturable coin is a coin whose capture in no way adversely
affects the capturing player’s strategy. We saw examples of such moves in
Figure 1.4 (a), (b), (c) and (d). A capturable coin with a loony option
provides a winning strategy for the player to move; examples of such moves
may be found in Figure 1.4 (e) and (f). Let’s consider all coins in 1 string, ≥
2 coins 3D Dots-and-Boxes that have a loony option. Recall that the loony
moves in traditional Strings-and-Coins either had a string going to the ground
(illegal in 1 string, ≥ 2 coins 3D Dots-and-Boxes) or a pair of connected
coins that could be forced on one’s opponent if necessary (reproduced in
Figure 3.10).

In order for a position to be loony, the player to move must have the
option to either capture at least one coin, or make a move that forces his

40

Figure 3.10: A loony move.

Figure 3.11: 2, 3 and 4-coin loony positions.

opponent to capture at least one coin. Figure 3.11 provides examples of how
this might occur with a 2-coin string, a 3-coin string and a 4-coin string.
Each red coin may be attached to other coins not shown in the figure, and
each red string may be transformed into either a 3 or 4-coin string.

Theorem. A position in 1 string, ≥ 2 coins 3D Dots-and-Boxes is loony
if and only if it takes one of the three forms shown in Figure 3.11.

Proof. Suppose we have an arbitrary loony position. Furthermore, suppose
that this loony position is as simple as possible (i.e., there are no extraneous
canonically capturable coins). By definition, we have the option to either
remove all capturable coins or force our opponent to remove all capturable
coins. If we wish to force our opponent to remove all capturable coins,
then we must make a move that does not capture any coins. This may
be accomplished by cutting either a 2, 3 or 4-coin string (shown in black in
Figure 3.11) and leaving our opponent with a number of 2, 3 or 4-dealt moves
(see Figure 3.12). If our opponent were left with anything other than 2, 3 or
4-dealt moves, that would contradict our assumption that the loony position
was a simple as possible. All possible combinations of 2, 3 and 4-dealt moves
are described in Figure 3.11 (consider the red strings).

Alternatively, if we wish to remove all capturable coins, we may remove
all potential 2, 3 and 4-dealt moves (described by the red strings) and end our

41

Figure 3.12: 2, 3 and 4-dealt moves.

turn by cutting one of the black strings in Figure 3.11. Now suppose that we
have one of the positions shown in Figure 3.11. Each of these positions has at
least one capturable coin (the black coin attached to just one red string) and
one move that leaves only n-dealt moves (cutting the black string). These
are the two criteria for a loony position.

Recall that all capturable coins must either be canonically capturable or
have a loony option. We have shown that all coins with loony options must
exist in one of the forms pictured in Figure 3.11. Therefore, all other cap-
turable coins in 1 string, ≥ 2 coins 3D Dots-and-Boxes must be canonically
capturable. We now have enough information to present an algorithm for de-
termining the nim-value of an arbitrary game of 1 string, ≥ 2 coins 3D
Dots-and-Boxes (this is the same algorithm presented for nimber calculation
in traditional Dots-and-Boxes):

1. The Nimstring position with no available strings to cut has nim-value
0∗.

2. The position with canonically capturable coins has the same value as
the position after those coins are captured.

3. The position with loony options shown in Figure 3.11 has value %.

4. The position with no capturable coins has value equal to the mex of the
values of its subpositions.

FURTHER QUESTIONS

Before we move on to the third and final interpretation of 3D Dots-and-
Boxes, let us take a moment to pose some questions that warrant further
investigation. Perhaps the zealous reader might find it interesting to tackle
these issues on his or her own time.

42

• Since the computational power necessary for solving a simple Dots-
and-Boxes position is already well beyond the capacities of existing
technology, we have little hope of solving 3D Dots-and-Boxes on a com-
puter. However, we have seen in our discussions of Kayles and Dawson’s
Kayles that we may bypass these difficulties with some simple pattern
recognition. In that regard, it may be worthwhile to examine the nim-
ber sequences associated with certain classes of 1 string, ≥ 2 coins
3D Dots-and-Boxes positions.

• The idea of playing a game with 1 string and ≥ 2 coins harkens back
to the idea of a hypergraph (that is, a graph that allows for an arbi-
trary number of nodes to be connected by one edge). One potential
extension of this problem is to explore potential patterns in nimbers
associated with simple hypergraphs. If any patterns emerge, they may
be translatable back to the original game of 1 string, ≥ 2 coins 3D
Dots-and-Boxes, and allow us to develop winning strategies.

• Although we had little success implementing the Long Chain Rule,
there may be other “high level” indicators that allow a player to antici-
pate who will ultimately gain control. A further examination of factors
that contribute to the process of gaining control could yield interesting
results.

≥ 1 STRING, ≥ 2 COINS

≥ 1 string, ≥ 2 coins 3D Dots-and-Boxes is the most complicated version.
We are now faced with both n-coin strings and n-string coins (that is, a
pair of coins connected by more than one string). As we have done before,
let’s begin by creating a Strings-and-Coins analogue. We shall map cubes
to coins and edges to strings. The number written on each string represents
the number of strings connecting those two coins (Figure 3.13). Note that if
we limit the shape of our game board to a rectangular prism (that is, some
n×m× l 3D grid), only 1, 2 and 4-coin strings exist.1

Is there an equivalent Long Chain Rule for ≥ 1 string, ≥ 2 coins 3D
Dots-and-Boxes? We should expect to run into the same problem that we did
with the 1 string, ≥ 2 coins version: namely, that the number of n-dealt

1A 3-coin string requires a L-shaped board (think a 3D version of the L-shaped Tetris
piece).

43

×1×3

×3

×3

×3

×5×5

×5×5

Figure 3.13: Mapping complicated 3D Dots-and-Boxes to Strings-and-Coins

moves in the endgame varies from one match to another. Let us therefore
move straight ahead and try to understand the Nimstring equivalent of ≥ 1
string, ≥ 2 coins 3D Dots-and-Boxes.

NIMSTRING: ≥ 1 STRING, ≥ 2 COINS

As before, our ultimate goal is to construct an algorithm that will theoret-
ically allow us to compute the nim-value of any position. The existence of
such an algorithm will not enable us to solve most games; the search space
is far too large to build up a useful library of nimbers. Nevertheless, it forms
a foundation upon which we may construct a richer analysis.

As before, we separate all positions with capturable coins into two classes:
canonical captures and loony options. Because the number of canonical cap-
tures far exceeds that of loony options, we shall proceed by constructing a
list of all loony positions in ≥ 1 string, ≥ 2 coins 3D Dots-and-Boxes. Part
of this list is illustrated schematically in Figure 3.14.

The first two loony positions roughly correspond to the 2 and 4-coin
string positions in Figure 3.11. There are two noteworthy distinctions. In
Figure 3.14, the red strings indicate a 1-coin string, a 2-coin string or a 4-coin
string, and the dashed red strings indicate a 2-coin string or a 4-coin string.
The remaining four positions represent specific scenarios. While the first
three positions are relatively self-explanatory, the last requires some further
explanation. This position is loony because the player to move has the choice
of either removing all coins (by cutting the 4-coin string), or alternating turns

44

Figure 3.14: More loony positions.

cutting 1-coin strings until his opponent is forced to cut the central 4-coin
string. In either case, the player to move has the capacity to dictate the
outcome of the position.

It is uncertain whether the diagrams in Figure 3.14 include all possible
loony positions. Unlike in Figure 3.11, there are a significant number of
specific positions that are loony (e.g. the last four positions in Figure 3.14),
and these do not fit easily into particular schema. We propose the following
hypothesis, acknowledging the possibility of some missing cases:

Claim. All loony positions in ≥ 1 string, ≥ 2 coins 3D Dots-and-Boxes
are illustrated in Figure 3.14.

Independent of the veracity of this claim, we may still apply the general-
ized algorithm for determining Nimstring nim-values:

1. The Nimstring position with no available strings to cut has nim-value
0∗.

2. The position with canonically capturable coins has the same value as
the position after those coins are captured.

3. The position with loony options shown in (but not necessarily limited
to) Figure 3.14 has value %.

45

4. The position with no capturable coins has value equal to the mex of the
values of its subpositions.

FURTHER QUESTIONS

Again, let us take a moment to identify additional areas of research in the
realm of ≥ 1 string, ≥ 2 coins 3D Dots-and-Boxes:

• Clearly, this section lacks a complete analysis of all loony positions.
Although we posit that all positions are illustrated in Figure 3.14, the
proof is incomplete. We recommend that further research be done to
verify this claim.

• We are limited by computational power when it comes to calculating
nimbers for large game boards. This is perhaps most apparent in this
version of Dots-and-Boxes, since each available box can only be cap-
tured upon the completion of 12 moves. Consequently, it is likely far
more fruitful to examine emergent patterns in simple games. In this
particular version, games are played on a certain class of graphs called
multigraphs. Multigraphs allow nodes to be connected by multiple
strings. An examination of the nimbers associated with simple multi-
graphs could yield interesting patterns and warrants further research.

• We have looked at both hypergraphs and multigraphs, but not at the
combination of the two. Although potentially challenging, an exami-
nation of the nimbers associated with this class of graphs is likely a
worthwhile exercise.

46

WRAPPING UP

We have reached the end of this paper, although at this point it seems that
we have asked far more questions than we have answered. We started with
the idea of creating numbers from the set of moves in the simple (and con-
trived) game of Socks-and-Boxes. We realized that there were certain num-
bers that we could not create, and found ourselves augmenting and morphing
Socks-and-Boxes into more complicated games with slightly different rules.
Eventually, we arrived at the game of Nim and realized that all combina-
torial games can be mapped to games of Nim and nimbers. We examined
the games of Kayles and Dawson’s Kayles, and showed how these games can
be mapped to games of Nim. At the same time, we showed how emergent
patterns of nimbers allowed us to completely solve these games. We then
moved on to Dots-and-Boxes, and applied the ideas of combinatorial game
theory to make a stab at its solution. We found that the process of nimber
calculation for a given position of Dots-and-Boxes takes O(n!) time and is
completely unfeasible for large games. At this impasse, we sought the help
of computers, and discussed methods for creating a computer program that
would help make this process more efficient. We demonstrated how these
methods helped create a program that plays Dots-and-Boxes well, albeit im-
perfectly. Finally, we examined what it means to play Dots-and-Boxes in
three dimensions. We presented an overview of each of the interpretations
of 3D Dots-and-Boxes, and explored possible variations of the Long Chain
Rule and the algorithm for nimber calculation for each of these.

Along the way, we’ve found ourselves asking a number of questions. Can
we ever find a complete solution for a given class of Dots-and-Boxes? Can we
develop a heuristic function that improves the functionality of the program
without significantly detracting from the computational time? Can we add
iterative deepening search to help improve the success of the transposition
table? Is there an optimal strategy for ordering the moves that the program

47

examines in minimax, and what is this ordering? Is it reasonable to imple-
ment a more brutish pruning function at the beginning of the game, since
the opening moves seem to have little effect on the game’s outcome? What
concessions are reasonable to make in order to increase the speed at which
the program functions? What strategies can we employ to solve Dots-and-
Boxes, since the search space for nimber calculation is inaccessibly large?
Are there certain classes of positions that we can find patterns in? What are
the nimbers associated with different classes of graphs?

Although the paper ends here, we would like to recommend further ex-
amination of the relationship between nimbers and graph theory. We have
presented a clear algorithm for determining the nimbers of any given graph,
and suggest that creating a detailed list of these nimbers may lead to some
interesting discoveries. The fields of graph theory and combinatorial game
theory are largely discrete, and in the interest of theoretically developing a
unified theory, this relationship is worthy of further examination. In par-
allel, we suggest further research into the development of clever algorithms
for calculating nimbers of Dots-and-Boxes positions (i.e. graphs). The cur-
rent algorithms run in O(n!), and any improvements on this abysmal speed
would greater accelerate the study of the relationship between graph theory
and combinatorial game theory.

Finally, I would like to acknowledge the help I have received during the
course of this project. I spent most of my time writing this paper and the
computer program referenced in section two while sitting on the couch at my
parents’ house. Their tolerance of my lounging engagement with academia
and random expositions of why my program was not compiling have not gone
unappreciated. I would also like to thank my mentor Glen Van Brummelen
for his support over the last three years, especially regarding my inability
to decide on and begin a topic that I deemed Keystone-worthy. Finally, I
would like to thank all of my lovely friends, who have provided support both
directly, and through means of distraction (frisbee golf in the woods, Mao,
pictionary, Scattergories and God-knows-what-else). It’s been a wonderful
five years.

48

Bibliography

[1] Alexandre Sierra Ballarin. “Combinatorial Game Theory: The Dots-
and-Boxes Game”. MA thesis. Universitat Politecnica de Catalunya,
2016.

[2] Joseph K. Barker and Richard E. Korf. “Solving Dots-and-Boxes”.
In: Association for the Advancement of Artificial Intelligence (2012),
pp. 414–419.

[3] Elwyn R. Berlekamp. The Dots-and-Boxes Game: Sophisticated Child’s
Play. 1st ed. A K Peters, Ltd., 2000.

[4] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways for Your Mathematical Plays: Volume 1. 2nd ed. A K Peters,
Ltd., 2001.

[5] Andrew Brinker. “Developing an Efficient Algorithm for Nimber Cal-
culation in Dots and Boxes”. In: (2013), pp. 1–10.

[6] Mediocre Chess. Transposition Tables.

[7] Donald E. Knuth. Surreal Numbers. Ed. by 1. Addison-Wesley Profes-
sional, 1974.

[8] Francois Dominic Laramee. Chess Programming Part IV: Basic Search.

[9] Paul R. Stevens. PRsBoxes.

[10] Yimeng Zhuang et al. “Improving Monte-Carlo Tree Search for Dots-
and-Boxes with a novel board representation and artificial neural net-
works”. In: IEEE CIG 2015 (2015), pp. 314–321.

49

CONNECTIONS TO GRAPH THE-
ORY

The different versions of Nimstring that we have explored in this paper show
some compelling similarities to graph theoretical concepts. Let us take a
moment to illustrate these connections.

ORIGINAL NIMSTRING

The original game of Nimstring is played on a graph. Each coin is equivalent
to a vertex and each string is equivalent to an edge. 1-coin strings may be
thought to connect to a special vertex called the “ground.” Readers familiar
with graph-coloring and Ramsey theory might find interest in examining
possible crossover between cutting strings and coloring edges.

1 STRING, ≥ 2 COINS NIMSTRING

This is Nimstring played on a hypergraph. Hypergraphs allow edges to be
joined between more than two vertices.

≥ 1 STRING, ≥ 2 COINS NIMSTRING

This is Nimstring played on a hypergraph-multigraph hybrid. Multigraphs
allow for multiple edges between the same two vertices. One area of interest
might be what a multigraph game of Nimstring looks like when translated
back into Dots-and-Boxes.

50

GENERALITIES

Graph theory examines a number of classes of graph. These include, but are
in no way limited to:

1. bipartite graphs

2. complete graphs

3. cyclic and acyclic graphs

4. star graphs

5. wheel graphs

It could be quite enlightening to determine the nim-values of games of
Nimstring played on these various graphs. What if we look at comparable
structures in hypergraphs and multigraphs? It may also be worth examining
whether there is an obvious connection between the nim-value of a graph and
the nim-value of its complement. To the extent of the author’s knowledge,
this is an essentially unexplored area of mathematics.

A list of all uncited sources in included in the following parenthetical
remark ([10], [1], [8], [6], [9], [5], [2]).

51

THE CODE

MAIN CLASS

1 import java . u t i l . Hashtable ;
2 import java . u t i l . Scanner ;
3

4 pub l i c c l a s s Main {
5

6 pub l i c s t a t i c void main (S t r ing [] a rgs) {
7 // TODO Auto−generated method stub
8

9 Scanner input = new Scanner (System . in) ;
10 Strategy he lpe r = new Strategy (1) ;
11

12 System . out . p r i n t l n (”Player 1 or p laye r 2?”) ;
13 i n t id = input . next Int () ;
14 System . out . p r i n t l n (”How many rows?”) ;
15 i n t rows = input . next Int () ;
16 System . out . p r i n t l n (”How many columns?”) ;
17 i n t columns = input . next Int () ;
18

19 i n t movesRemaining = 2∗ rows∗columns + rows + columns ;
20 i n t depth = 5 ;
21

22 Board star t ingBoard = new Board (rows , columns , 1) ;
23 Board afterMove = star t ingBoard ;
24

25 // getTotalDegree func t i on i s i n e f f i c i e n t and WRONG
26 whi le (movesRemaining != 0) {
27 // i f (movesRemaining < 12) depth = 9 ;
28 i f (afterMove . getID () == id) {
29 afterMove = makeOppMove(afterMove) ;
30 movesRemaining−−;
31 depth = (i n t) Math . pow (1 . 2 5 , 2∗ rows∗columns + rows + columns −

↪→ movesRemaining) ;
32 }
33 // i f (movesRemaining < 12) depth = 15 ; //REDUNDANT
34 i f (afterMove . getID () != id) {
35 he lpe r . alphaBeta (afterMove , depth , Double .NEGATIVE INFINITY,

↪→ Double . POSITIVE INFINITY , t rue) ;
36 afterMove = he lpe r . bestBoard ;
37 movesRemaining−−;
38 System . out . p r i n t l n (”The computer removed the f o l l ow i n g s t r i n g :

52

↪→ \ nStr ing ID = ” + he lpe r . bestMove [2] +
39 ”\nx = ” + he lpe r . bestMove [0] + ”\ny = ” + he lpe r . bestMove [1]) ;
40 }
41 }
42

43 // s c o r i ng i s wrong !
44 System . out . p r i n t l n (”Game over ! F ina l s co r e :\ nComputer : ” +

↪→ he lpe r . computerScore + ”\nYou : ” + he lpe r . opponentScore) ;
45 }
46

47 pub l i c s t a t i c Board makeOppMove(Board board) {
48 Scanner input = new Scanner (System . in) ;
49 System . out . p r i n t l n (” Please ente r the x−coord inate o f the co in whose

↪→ s t r i n g you wish to cut : ”) ;
50 i n t x = input . next Int () ;
51 System . out . p r i n t l n (” Please ente r the y−coord inate o f the co in whose

↪→ s t r i n g you wish to cut : ”) ;
52 i n t y = input . next Int () ;
53 System . out . p r i n t l n (” Please ente r the ID o f the s t r i n g you wish to

↪→ cut : ”) ;
54 i n t s t r ing ID = input . next Int () ;
55 //Add e r r o r statement here ! ! !
56 r e turn DBUt i l i t i e s . nextMove (board , board . boardCoins [x] [y] , s t r ing ID) ;
57 }
58

59 }

STRATEGY CLASS

1 import java . u t i l . ArrayList ;
2 import java . u t i l . Hashtable ;
3

4 pub l i c c l a s s Strategy {
5 i n t id ;
6 Board bestBoard ;
7 i n t [] bestMove = new in t [3] ;
8 Hashtable<Long , Transpos i t ion> t r an spo s i t i onTab l e = new Hashtable<Long ,

↪→ Transpos i t ion >() ;
9 i n t computerScore = 0 ;

10 i n t opponentScore = 0 ;
11

12 pub l i c Strategy (i n t playerID) {
13 t h i s . id = playerID ;
14 }
15

16 pub l i c double alphaBeta (Board board , i n t depth , double alpha , double
↪→ beta , boolean maximizingPlayer) {

17 //System . out . p r i n t l n (”Computer Score : ” + computerScore + ” & Opponent
↪→ Score : ” + opponentScore + ” & Depth : ” + depth) ;

18 // t h i s i s n ’ t working b/c i t s e t s ex t e rna l v a r i ab l e equal to nu l l in
↪→ each r e cu r s i on . ! ! ! Temp so l u t i o n might be sketchy

19 Board tempBestBoard = nu l l ;
20 //temp s o l u t i o n might be sketchy ! ! ! ! !
21 i n t [] tempBestMove = {−1,−1,−1};
22 double va lue ;
23 Transpos i t i on entry = t ran spo s i t i onTab l e . get (board . zobr i s tKey) ;

53

24 // i f the board z ob r i s t key in the TT equa l s the cur rent board key
25 i f (entry != nu l l) {
26 i f (entry . zobr i s tKey == board . zobr i s tKey) {
27 i f (entry . depth >= depth) {
28 i f (entry . compScore == computerScore && entry . oppScore ==

↪→ opponentScore) {
29 //Get bestBoard from TT
30 tempBestBoard = entry . bestBoard ;
31 tempBestMove = entry . bestMove ;
32 i f (entry . f l a g == 0) {
33 value = entry . va lue ;
34 //Somehow encode the s co r e here . . . ? ? ?
35 r e turn value ;
36 }
37 i f (entry . f l a g == 1 & entry . va lue >= alpha) {
38 // alpha , beta are fn s o f the s co r e . . .
39 alpha = entry . va lue ;
40 }
41 i f (entry . f l a g == 2 & entry . va lue <= beta) {
42 beta = entry . va lue ;
43 }
44 }
45 }
46 }
47 }
48 // getTotalDegree func t i on i s i n e f f i c i e n t
49 i f (board . getTotalDegree () == 0) {
50 value = nimEval (board) ;
51 // puts the value in the TT. Evaluates z o b r i s t key o f e n t i r e board . 0

↪→ means that we s t o r e the r e a l va lue
52 storeHash (board , depth , 0 , value , f a l s e , tempBestBoard , tempBestMove) ;
53 r e turn value ;
54 }
55 e l s e i f (depth == 0) {
56 value = heu r i s t i cEa r l y (board) ;
57 // puts the value in the TT. Evaluates z o b r i s t key o f e n t i r e board . 0

↪→ means that we s t o r e the r e a l va lue
58 storeHash (board , depth , 0 , value , f a l s e , tempBestBoard , tempBestMove) ;
59 r e turn value ;
60 }
61 e l s e i f (maximizingPlayer == true) {
62 value = Double .NEGATIVE INFINITY;
63 ArrayList<i n t []> moves = DBUt i l i t i e s . orderMoves (board) ;
64 f o r (i n t [] array : moves) {
65 i f (board . boardCoins [array [0]] [array [1]] . g e tS t r i ng (array [2]) == 1) {
66 //PROBLEM! No deep copying
67 Board newBoard = DBUt i l i t i e s . nextMove (board ,

↪→ board . boardCoins [array [0]] [array [1]] , array [2]) ;
68 i f (newBoard . boardCoins [array [0]] [array [1]] . getDegree () == 0) {
69 computerScore = computerScore + 1 ;
70 value = Math .max(value , alphaBeta (newBoard , depth − 1 , alpha ,

↪→ beta , t rue)) ;
71 computerScore = computerScore − 1 ;
72 } e l s e {
73 value = Math .max(value , alphaBeta (newBoard , depth − 1 , alpha ,

↪→ beta , f a l s e)) ;
74 }

54

75 i f (va lue > alpha) {
76 alpha = value ;
77 tempBestBoard = newBoard ;
78 tempBestMove = array ;
79 // s t o r e s r e a l va lue o f board
80 storeHash (board , depth , 0 , value , f a l s e , tempBestBoard ,

↪→ tempBestMove) ;
81 }
82 i f (beta <= alpha) {
83 // In case o f a TT−invoked alpha−change
84 value = Math .max(value , alpha) ;
85 // In case o f a TT−invoked alpha−change
86 storeHash (board , depth , 1 , value , f a l s e , tempBestBoard ,

↪→ tempBestMove) ;
87 break ;
88 }
89 }
90 }
91 // f i n a l l y s e t s the proper bes t board . Worth recheck ing l a t e r ! ! ! ! !
92 bestBoard = tempBestBoard ;
93 bestMove = tempBestMove ;
94 //System . out . p r i n t l n (”∗∗∗∗∗∗∗∗∗∗∗∗VALUE: ” + value) ;
95 r e turn value ;
96 }
97 e l s e {
98 value = Double . POSITIVE INFINITY ;
99 ArrayList<i n t []> moves = DBUt i l i t i e s . orderMoves (board) ;

100 f o r (i n t [] array : moves) {
101 i f (board . boardCoins [array [0]] [array [1]] . g e tS t r i ng (array [2]) == 1) {
102 Board newBoard = DBUt i l i t i e s . nextMove (board ,

↪→ board . boardCoins [array [0]] [array [1]] , array [2]) ;
103 i f (newBoard . boardCoins [array [0]] [array [1]] . getDegree () == 0) {
104 opponentScore = opponentScore + 1 ;
105 value = Math . min (value , alphaBeta (newBoard , depth − 1 , alpha ,

↪→ beta , f a l s e)) ;
106 opponentScore = opponentScore − 1 ;
107 } e l s e {
108 value = Math . min (value , alphaBeta (newBoard , depth − 1 , alpha ,

↪→ beta , t rue)) ;
109 }
110 i f (va lue < beta) {
111 beta = value ;
112 tempBestBoard = newBoard ;
113 tempBestMove = array ;
114 // s t o r e s r e a l va lue o f board
115 storeHash (board , depth , 0 , value , f a l s e , tempBestBoard ,

↪→ tempBestMove) ;
116 }
117 i f (beta <= alpha) {
118 // In case o f a TT−invoked beta−change
119 value = Math . min (value , beta) ;
120 // In case o f a TT−invoked beta−change
121 storeHash (board , depth , 2 , value , f a l s e , tempBestBoard ,

↪→ tempBestMove) ;
122 break ;
123 }
124 }

55

125 }
126 r e turn value ;
127 }
128 }
129

130 pub l i c void storeHash (Board board , i n t depth , i n t f l ag , double value ,
↪→ boolean anc ient , Board tempBestBoard , i n t [] tempBestMove) {

131 Transpos i t i on tableEntry = new Transpos i t i on (board . zobristKey , depth ,
↪→ f l a g , value , anc ient , computerScore , opponentScore , tempBestBoard ,
↪→ tempBestMove) ;

132 t r an spo s i t i onTab l e . put (board . zobristKey , tab leEntry) ;
133 }
134

135 pub l i c double i t e r a t i v eDeepen ing (Board board , i n t d) {
136 bestBoard = board ;
137 double va lue = 0 ;
138 f o r (i n t depth = 1 ; depth <= d ; depth++) {
139 value = alphaBeta (bestBoard , depth , Double .NEGATIVE INFINITY,

↪→ Double . POSITIVE INFINITY , t rue) ;
140 }
141 r e turn value ;
142 }
143

144 pub l i c double nimEval (Board board) {
145 double r e s u l t = computerScore − opponentScore ;
146 r e turn r e s u l t ;
147 }
148

149 pub l i c double h eu r i s t i cEa r l y (Board board) {
150 double r e s u l t = computerScore − opponentScore ;
151 r e turn r e s u l t ;
152 }
153 }

BOARD CLASS

1 import java . u t i l . ArrayList ;
2 import java . u t i l .Random ;
3

4 pub l i c c l a s s Board {
5 i n t id ;
6 i n t rows ;
7 i n t columns ;
8 Coin [] [] boardCoins ;
9 i n t counter = 1 ;

10 boolean [] [] wasHere ;
11 long [] [] [] z obr i s tHashes ;
12 long zobr i s tKey ;
13 ArrayList<ArrayList<Coin>> components = new ArrayList<ArrayList<Coin>>() ;
14 boolean [] [] wasHereAgain ;
15

16 Random rdm = new Random() ;
17

18 pub l i c Board (Board c lone) {
19 t h i s . id = c lone . id ;
20 t h i s . rows = c lone . rows ;

56

21 t h i s . columns = c lone . columns ;
22 t h i s . components = c lone . components ;
23 t h i s . zobr i s tKey = c lone . zobr i s tKey ;
24 t h i s . wasHere = c lone . wasHere ;
25 t h i s . wasHereAgain = c lone . wasHereAgain ;
26 t h i s . zobr i s tHashes = c lone . zobr i s tHashes ;
27 t h i s . boardCoins = new Coin [columns] [rows] ;
28 f o r (i n t j = 0 ; j < rows ; j++) {
29 f o r (i n t i = 0 ; i < columns ; i++) {
30 boardCoins [i] [j] = new

↪→ Coin (i , j , c l one . boardCoins [i] [j] . g e tS t r i ng (0) , c l one . boardCoins [i] [j] . g e tS t r i ng (1) ,
31

↪→ c lone . boardCoins [i] [j] . g e tS t r i ng (2) , c l one . boardCoins [i] [j] . g e tS t r i ng (3)) ;
32 }
33 }
34 }
35

36 pub l i c Board (i n t rows , i n t columns , i n t id) {
37 t h i s . id = id ;
38 t h i s . rows = rows ;
39 t h i s . columns = columns ;
40 t h i s . boardCoins = new Coin [columns] [rows] ;
41 t h i s . wasHere = new boolean [columns] [rows] ;
42 t h i s . wasHereAgain = new boolean [columns] [rows] ;
43 t h i s . zobr i s tHashes = new long [columns] [rows] [4] ;
44 f o r (i n t j = 0 ; j < rows ; j++) {
45 f o r (i n t i = 0 ; i < columns ; i++) {
46 boardCoins [i] [j] = new Coin (i , j) ;
47 f o r (i n t k = 0 ; k < 4 ; k++) {
48 zobr i s tHashes [i] [j] [k] = Math . abs (rdm . nextLong ()) ;
49 zobr i s tKey = zobr i s tKey ˆ= zobr i s tHashes [i] [j] [k] ;
50 }
51 }
52 }
53 }
54

55 pub l i c long getZobr istKey () {
56 t h i s . zobr i s tKey = 0 ;
57 f o r (i n t i = 0 ; i < columns ; i++) {
58 f o r (i n t j = 0 ; j < rows ; j++) {
59 f o r (i n t k = 0 ; k < 4 ; k++) {
60 i f (boardCoins [i] [j] . g e tS t r i ng (k) == 1) {
61 zobr i s tKey = zobr i s tKey ˆ= zobr i s tHashes [i] [j] [k] ;
62 }
63 }
64 }
65 }
66 r e turn zobr i s tKey ;
67 }
68

69 pub l i c void updateKey (i n t x , i n t y , i n t s t r ing ID) {
70 zobr i s tKey = zobr i s tKey ˆ= zobr i s tHashes [x] [y] [s t r ing ID] ;
71 }
72

73 pub l i c i n t getTotalDegree () {
74 i n t to ta lDegree = 0 ;
75 f o r (i n t j = 0 ; j < rows ; j++) {

57

76 f o r (i n t i = 0 ; i < columns ; i++) {
77 to ta lDegree = tota lDegree + boardCoins [i] [j] . degree ;
78 }
79 }
80 r e turn to ta lDegree ;
81 }
82

83 pub l i c i n t getRows () {
84 r e turn t h i s . rows ;
85 }
86

87 pub l i c i n t getColumns () {
88 r e turn t h i s . columns ;
89 }
90

91 pub l i c i n t getID () {
92 r e turn t h i s . id ;
93 }
94

95 pub l i c void setID (i n t id) {
96 t h i s . id = id ;
97 }
98

99 pub l i c i n t countChains (Coin co in) {
100 i f (co in . getDegree () > 2) {
101 counter = 0 ;
102 r e turn counter ;
103 }
104 i f (wasHere [co in . getX ()] [co in . getY ()]) {
105 counter = counter − 1 ;
106 r e turn counter ;
107 }
108 wasHere [co in . getX ()] [co in . getY ()] = true ;
109 i f (co in . g e tS t r i ng (0) == 1 & co in . getY () < rows − 1) {
110 counter++;
111 countChains (boardCoins [co in . getX ()] [co in . getY () + 1]) ;
112 }
113 i f (co in . g e tS t r i ng (1) == 1 & co in . getX () < columns − 1) {
114 counter++;
115 countChains (boardCoins [co in . getX () + 1] [co in . getY ()]) ;
116 }
117 i f (co in . g e tS t r i ng (2) == 1 & co in . getY () > 0) {
118 counter++;
119 countChains (boardCoins [co in . getX ()] [co in . getY () − 1]) ;
120 }
121 i f (co in . g e tS t r i ng (3) == 1 & co in . getX () > 0) {
122 counter++;
123 countChains (boardCoins [co in . getX () − 1] [co in . getY ()]) ;
124 }
125 r e turn counter ;
126 }
127

128 pub l i c void getConnectedCoins (Coin coin , i n t x) { //THERE COULD BE DEEP
↪→ COPYING PROBLEMS ! ! !

129 //Coin c loneCoin = new Coin (co in . getX () , co in . getY () , co in . g e tS t r i ng (0) ,
↪→ co in . g e tS t r i ng (1) , co in . g e tS t r i ng (2) , co in . g e tS t r i ng (3)) ;

130 i f (wasHereAgain [co in . getX ()] [co in . getY ()] == f a l s e) { // I f not

58

↪→ v i s i t e d . . .
131 wasHereAgain [co in . getX ()] [co in . getY ()] = true ;
132 components . get (x) . add (co in) ;
133 i f (co in . g e tS t r i ng (0) == 1) {
134 i f (co in . getY () + 1 < rows) {
135 getConnectedCoins (boardCoins [co in . getX ()] [co in . getY () + 1] , x) ;
136 }
137 }
138 i f (co in . g e tS t r i ng (1) == 1) {
139 i f (co in . getX () + 1 < columns) {
140 getConnectedCoins (boardCoins [co in . getX () + 1] [co in . getY ()] , x) ;
141 }
142 }
143 i f (co in . g e tS t r i ng (2) == 1) {
144 i f (co in . getY () − 1 >= 0) {
145 getConnectedCoins (boardCoins [co in . getX ()] [co in . getY () − 1] , x) ;
146 }
147 }
148 i f (co in . g e tS t r i ng (3) == 1) {
149 i f (co in . getX () − 1 >= 0) {
150 getConnectedCoins (boardCoins [co in . getX () − 1] [co in . getY ()] , x) ;
151 }
152 }
153 }
154 }
155

156 pub l i c void setComponents () {
157 i n t x = 0 ;
158 f o r (i n t j = 0 ; j < rows ; j++) {
159 f o r (i n t i = 0 ; i < columns ; i++) {
160 i f (wasHereAgain [i] [j] == f a l s e) {
161 ArrayList<Coin> component = new ArrayList<Coin>() ;
162 components . add (component) ;
163 getConnectedCoins (boardCoins [i] [j] , x) ;
164 x++;
165 }
166 }
167 }
168 }
169 }

COIN CLASS

1

2 pub l i c c l a s s Coin {
3 i n t x ;
4 i n t y ;
5 i n t [] s t r i n g s = new in t [4] ;
6 i n t degree ;
7

8 pub l i c Coin (i n t x , i n t y) {
9 t h i s . x = x ;

10 t h i s . y = y ;
11 s t r i n g s [0] = 1 ;
12 s t r i n g s [1] = 1 ;
13 s t r i n g s [2] = 1 ;

59

14 s t r i n g s [3] = 1 ;
15 t h i s . degree = s t r i n g s [0] + s t r i n g s [1] + s t r i n g s [2] + s t r i n g s [3] ;
16 }
17

18 pub l i c Coin (i n t x , i n t y , i n t a , i n t b , i n t c , i n t d) {
19 t h i s . x = x ;
20 t h i s . y = y ;
21 s t r i n g s [0] = a ;
22 s t r i n g s [1] = b ;
23 s t r i n g s [2] = c ;
24 s t r i n g s [3] = d ;
25 t h i s . degree = s t r i n g s [0] + s t r i n g s [1] + s t r i n g s [2] + s t r i n g s [3] ;
26 }
27

28 pub l i c i n t getX () {
29 r e turn t h i s . x ;
30 }
31 pub l i c i n t getY () {
32 r e turn t h i s . y ;
33 }
34 pub l i c i n t g e tS t r i ng (i n t x) {
35 r e turn t h i s . s t r i n g s [x] ;
36 }
37 pub l i c void s e t S t r i n g (i n t x) {
38 t h i s . s t r i n g s [x] = 0 ;
39 t h i s . degree = s t r i n g s [0] + s t r i n g s [1] + s t r i n g s [2] + s t r i n g s [3] ;
40 }
41 pub l i c i n t getDegree () {
42 r e turn t h i s . degree ;
43 }
44 }

TRANSPOSITION CLASS

1

2 pub l i c c l a s s Transpos i t i on {
3

4 long zobr i s tKey ;
5 i n t depth ;
6 i n t f l a g ;
7 double va lue ;
8 boolean anc i ent ;
9 i n t compScore ;

10 i n t oppScore ;
11 Board bestBoard ;
12 i n t [] bestMove ;
13

14 pub l i c Transpos i t i on (long zobristKey , i n t depth , i n t f l ag , double value ,
↪→ boolean anc ient , i n t compScore , i n t oppScore , Board bestBoard , i n t []
↪→ bestMove) {

15 t h i s . zobr i s tKey = zobr i s tKey ;
16 t h i s . depth = depth ;
17 t h i s . f l a g = f l a g ;
18 t h i s . va lue = value ;
19 t h i s . anc i ent = anc i ent ;
20 t h i s . compScore = compScore ;

60

21 t h i s . oppScore = oppScore ;
22 t h i s . bestBoard = bestBoard ;
23 t h i s . bestMove = bestMove ;
24 }
25 }

UTILITIES CLASS

1 import java . u t i l . ArrayList ;
2

3 pub l i c c l a s s DBUt i l i t i e s {
4

5 // t h i s could use co in . x and co in . y as parameters i n s t ead o f co in
6 pub l i c s t a t i c Board nextMove (Board board , Coin coin , i n t s t r ing ID) {
7 Board nextMove = new Board (board) ;
8 nextMove . updateKey (co in . getX () , co in . getY () , s t r ing ID) ;
9 nextMove . boardCoins [co in . getX ()] [co in . getY ()] . s e t S t r i n g (s t r ing ID) ;

10

11 i f (s t r ing ID == 0 & co in . getY () < nextMove . rows − 1) {
12 nextMove . boardCoins [co in . getX ()] [co in . getY () + 1] . s e t S t r i n g ((s t r ing ID

↪→ + 2) % 4) ;
13 nextMove . updateKey (co in . getX () , co in . getY () + 1 , (s t r ing ID + 2) % 4) ;
14 }
15 e l s e i f (s t r ing ID == 1 & co in . getX () < nextMove . columns − 1) {
16 nextMove . boardCoins [co in . getX () + 1] [co in . getY ()] . s e t S t r i n g ((s t r ing ID

↪→ + 2) % 4) ;
17 nextMove . updateKey (co in . getX () + 1 , co in . getY () , (s t r ing ID + 2) % 4) ;
18 }
19 e l s e i f (s t r ing ID == 2 & co in . getY () > 0) {
20 nextMove . boardCoins [co in . getX ()] [co in . getY () − 1] . s e t S t r i n g ((s t r ing ID

↪→ + 2) % 4) ;
21 nextMove . updateKey (co in . getX () , co in . getY () − 1 , (s t r ing ID + 2) % 4) ;
22 }
23 e l s e i f (s t r ing ID == 3 & co in . getX () > 0) {
24 nextMove . boardCoins [co in . getX () − 1] [co in . getY ()] . s e t S t r i n g ((s t r ing ID

↪→ + 2) % 4) ;
25 nextMove . updateKey (co in . getX () − 1 , co in . getY () , (s t r ing ID + 2) % 4) ;
26 }
27

28 // i f removes coin , keeps same ID
29 i f (nextMove . boardCoins [co in . getX ()] [co in . getY ()] . degree == 0) {
30 nextMove . setID (board . getID ()) ;
31 } e l s e {
32 // otherwise , changes ID from one p laye r to other
33 i f (board . getID () == 1) nextMove . setID (2) ;
34 i f (board . getID () == 2) nextMove . setID (1) ;
35 }
36

37 r e turn nextMove ;
38 }
39

40 pub l i c s t a t i c ArrayList<i n t []> orderMoves (Board board) {
41 ArrayList<i n t []> moves = new ArrayList<i n t [] > () ;
42 f o r (i n t j = 0 ; j < board . rows ; j++) {
43 f o r (i n t i = 0 ; i < board . columns ; i++) {
44 f o r (i n t k = 0 ; k < 4 ; k++) {

61

45 i n t [] toMove = { i , j , k } ;
46 moves . add (toMove) ;
47 }
48 }
49 }
50 r e turn moves ;
51 }
52 }

62

