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1 Introduction

A large number of graph-theoretic problems center around the issue of embedding a small graph H inside of
a larger graph G. While questions of embeddings can sometimes be answered by simply looking at structural
properties of the graphs (e.g. are they bipartite, complete, cycles, etc.), it is often the case that more robust
or generalizable strategies are needed. One such strategy, which has grown in prominence and success in
recent years, is that of dependent random choice. In the simplest of terms, dependent random choice is a
probabilistic tool that can be used to guarantee the existence of highly connected areas in all graphs with
“enough” edges.

Naturally, such a description gives rise to a number of questions. These include: What does probability
mean in the context of graphs? What do we mean by “enough edges”? How connected is “highly connected”?
How do we find such an area? Additionally, one might wonder about the specific problems that employ this
technique: When is it useful to find a set of highly connected vertices? What does that help us prove? Can
we apply this strategy to all types of graphs? How extensible is it?

In this paper, we address the above questions, in roughly the order that they are presented. We first
examine the use of probability in graph theory, and present some simple examples that illustrate its value.
We then move on to the specific technique of dependent random choice, where we flesh out the description
presented above. We present both technical and intuitive explanations of the lemma, along with a (relatively)
simple application. Finally, we explore some problems, the solutions of which rely on the application of
dependent random choice.

1.1 The Probabilistic Method

We typically think of problem solving as the process of determining answers. In essence, we are given a
question and expected to provide a (somewhat) concrete result. When applying the probabilistic method,
however, we simply show that there is some positive probability that a solution exists (within some broader
probability space). This then implies that there is some circumstance where we achieve the desired outcome.
It is worth noting that this method is non-constructive; while it proves that something exists, it tells us very
little about how to find it.

The probabilistic method has been used extensively in graph theory and combinatorics at large to prove
the existence of certain structures. Perhaps the most classical application of the technique is exhibited in
a proof by Erdős regarding the Ramsey numbers. [The following proof is given by Balachandran in their
paper on the probabilistic method [1].]

Proposition 1.1. For k ≥ 3, R(k, k) > b2k/2c.

Proof: Let G = Kn be a complete graph on n = b2k/2c vertices. We show that, given a uniformly random
coloring of the edges of G, the probability that there exists a monochromatic induced subgraph on a subset
of k vertices of G is less than 1. This implies that there exists at least one edge-coloring of G where no
k-vertex induced subgraph is monochromatic, and therefore R(k, k) > b2k/2c.

Two-color the edges of G uniformly at random. Let R ⊂ V (G) be a set of k vertices, and AR be the
event that the edges of the subgraph induced by R are monochromatic. We then have that the probability
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of AR is:

P(AR) = 2 · 2(n
2)/2(k

2)

2(n
2)

=
2

2(k
2)

= 21−(k
2).

Summing over all possible events AR provides an upper bound on the probability that G contains a monochro-
matic induced subgraph on k vertices. As there are

(
n
k

)
possible subsets R, we have:∑

R⊂V (G),|R|=k

P(AR) =

(
n

k

)
P(AR) =

(
n

k

)
21−(k

2).

We now show that the above expression is less than 1, thus implying that there exists at least one coloring
of the edges of G that does not contain any monochromatic induced subgraphs on k vertices. Recalling that(
n
k

)
≤ nk

k! , we have for k ≥ 3:(
n

k

)
21−(k

2) <
nk

k!
· 21−(k

2/2)+(k/2) =
21+(k/2)

k!
· nk

2k2/2
.

Finally, plugging in n = b2k/2c:

21+(k/2)

k!
· nk

2k2/2
=

21+(k/2)

k!
· 2k

2/2

2k2/2
=

21+(k/2)

k!
< 1.

Therefore, we conclude that there must exist at least one coloring of the edges of G that does not contain
any monochromatic induced subgraphs on k vertices. This implies that R(k, k) > b2k/2c. �

The above example helps illustrate the power of the probabilistic method. Rather than searching through
all possible colorings to find a particular example that satisfies the constraints of the problem, we simply show
that such an example must exist. In the circumstance where it is sufficient to simply know of the existence
of such an example, this process can be a significant time-saver, as it provides a (somewhat) prescriptive
approach, rather than requiring an outright search.

Dependent random choice provides a slightly more complicated example of the application of probabilistic
techniques to graph-theoretical concepts. However, the fundamental idea remains the same. We show that,
given a graph with average degree d, there exists a subset U of a vertices (the size of which depends on d,
among other variables), where all subsets of U have a lot of common neighbors. We do not show how to find
this subset U ; we simply guarantee that it exists probabilistically.

1.2 Applications

Before we dive into the formal statement of the lemma of dependent random choice, let us take a moment to
familiarize ourselves with the types of problems that it can help us solve. As we suggested in the introduction,
problems of embeddings are particularly well-suited to dependent random choice. The reason for this should
be somewhat clear. Since dependent random choice tells us about this existence of certain edge-dense regions
in a graph, it can be used to guarantee the presence of certain small graphs within these regions.

Perhaps the most accessible of such problems are those concerned with the extremal number of a graph
H. These problems pose the following question: How many edges can we add to a graph on n vertices such
that this graph does not contain a copy of H? We define the extremal number as follows:

Definition 1.1. Let G be a graph on n vertices. Let the extremal number ex(n,H) of H be the maximum
number of edges in G such that G does not contain any copies of H.

For example, we might wish to determine ex(n,K3); that is, how many edges can we add to an n-vertex
graph without creating any triangles? Or we might wish to know the answer to this question for all complete
graphs Kr. Or bipartite graphs. The list goes on. This problem has been extensively studied, and a number
of results are known. To list a few:

• ex(n,K3) = bn
2

4 c: This result is better known as Mantel’s theorem, and states that the triangle-free
graph with the largest number of edges is the complete bipartite graph Kbn/2c,dn/2e.
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• ex(n,Kr): The extremal number of Kr is precisely the number of edges in a complete (r − 1)-partite
graph with partitions of roughly (within floor/ceiling) equal size. This is result is due to Turán, and is
simply a generalization of Mantel’s theorem.

• ex(n,H) ≤ cn2− 1
r : This result applies to bipartite graphs H with maximum degree r. Here we see

that any n-vertex graph with more than some constant multiple c of n2− 1
r edges must contain a copy

of H.

While the first two results may seen somewhat intuitive, the third is less obvious. Where does the n2− 1
r

term come from? What is the structure of some graph G that does not contain bipartite H? We shall see
in the following sections that this bound actually relies on the lemma of dependent random choice, and is
therefore not constructive. We will simply show that in a graph with at least cn2− 1

r edges, there must exist
a region of high enough connectedness to ensure the presence of a bipartite H.

Finally, at the end of the paper, we demonstrate how dependent random choice can be used to determine
an upper bound on Ramsey numbers of the cube, and discuss some further developments related to this
problem.

2 Dependent Random Choice

We have already seen a high-level description of dependent random choice, and understand it to be a
probabilistic process through which we are able to determine certain properties about specific small regions
in a graph. Before we see the formal statement of this process, we shall present one final example, with
the aim of further building intuition about the upcoming result. [The following example is borrowed from a
lecture by Professor Yufei Zhao at MIT [5].]

Suppose we wish to model acquaintances between students at a university. Let us suppose that
every student knows some (fairly large) number d of other students. Dependent random choice
says that we can always find a large subset U of the student body, such that every group of r
students in U have at least a certain number (say m) of common friends (figure 1). We might
think of this group U as the math department, and each group r as a particular math course.
In other words, we can always “zoom in” on a particular group (region), where most people
(vertices) know each other (are connected).

Figure 1 provides a representation of what some subsets of size r of this set U might look like. However,
note that this figure does not include all of the edges in U . Because each subset of U of size r has at least m
common neighbors, it is more accurate to think of U as something resembling a complete graph. An example
of such a set U is given in figure 2.

G

U

Figure 1: A visual explanation of dependent random choice (r = 3, m = 2). Not all edges are
shown. Examples of groups of r vertices are circled and common neighbors are represented by
edges. Note that we consider all groups of r vertices, not simply the ones shown in the figure.
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G

U

Figure 2: A visualization of the subset U . Here we have |U | = 3, r = 2 and m = 5.

With this example in mind, we present the lemma of dependent random choice. [This particular instance
of the lemma is due to Fox and Sudakov [2], with proof ideas from [2] and [3].]

Lemma 2.1. Let a, d,m, n, r be positive integers. Let G = (V,E) be a graph with |V | = n vertices and
average degree d = 2|E(G)|/n. If there is a positive integer t such that

dt

nt−1 −
(
n

r

)(m
n

)t
≥ a,

then G contains a subset U of at least a vertices such that every r vertices in U have at least m common
neighbors.

Proof: We show that the expression on the LHS of the above inequality finds a subset U ⊆ V (G) of at least
a vertices that satisfies the constraints of the lemma. We consider the two terms of the LHS independently.

1. dt

nt−1 : Let T be a set of t vertices of G chosen uniformly at random with repetition, let A = N(T ) be
the common neighborhood of T , and let X = |A|. We show that dt/nt−1 gives a lower bound on the
expected size of A. In other words, we show that

E[X] ≥ dt

nt−1 .

Recall that the expectation is simply the sum of the probabilities. Therefore:

E[X] =
∑

v∈V (G)

P(v ∈ A).

Note that the probability that a vertex v is in A is precisely the same as the probability that v is
adjacent to all the vertices in T . Therefore:

E[X] =
∑

v∈V (G)

P(T ⊆ N(v)).

Since |T | = t, the above expression is equivalent to the probability that v is adjacent to t particular
vertices. As such:

E[X] =
∑

v∈V (G)

(
d(v)

n

)t

= n−t
∑

v∈V (G)

d(v)t.

(Here, d(v)/n gives the probability that v is adjacent to some particular vertex, and the power of t
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gives the probability that v is adjacent to t particular vertices.) Applying convexity1 to the above
expression yields:

E[X] = n−t
∑

v∈V (G)

d(v)t ≥ n−t · n1−t

 ∑
v∈V (G)

d(v)

t

.

Bringing the n−t term back into the parentheses:

E[X] ≥ n1−t

(∑
v∈V (G) d(v)

n

)t

.

Note that the parenthetical expression is exactly the average degree d of G. Therefore, we have:

E[X] ≥ dt

nt−1 .

2.
(
n
r

) (
m
n

)t
: We determine the expected number of r-vertex subsets of A with fewer than m common

neighbors. Let a set S of r vertices be bad if it has fewer than m common neighbors, and let Y be the
number of bad sets S ⊂ A. We claim that

E[Y ] >

(
n

r

)(m
n

)t
.

We first consider the probability that any set S of r vertices is a subset of A. Recall from (1) that A
is the common neighborhood of T , and so the probability that S is a subset of A is precisely equal to
the probability that T is in the common neighborhood of S. In other words:

P(S ⊂ A) =

(
# of common neighbors of S

n

)t

.

(Here, the parenthetical term gives the probability that all vertices of S are adjacent to a particular
vertex, and the exponent t gives the probability that the vertices of S are adjacent to t = |T | particular
vertices.) Now suppose that the number of common neighbors of S is less than m (i.e. S is bad).
Plugging this into the above expression, we have that the probability of A containing a bad set is
strictly less than (m

n

)t
.

Note that there are
(
n
r

)
possible sets of size r in G. Therefore, by linearity of expectation, we have

that the expected number of bad sets S in A is:

E[Y ] <

(
n

r

)(m
n

)t
.

In (1) we determined the expected size of a set A of common neighbors of t vertices of G (i.e. E[X]). In
(2) we determined the expected number of subsets of A of size r with fewer than m common neighbors (i.e.
E[Y ]). We now delete one vertex from each subset of A that has fewer than m common neighbors, and let
the resulting set be U . Note that U contains no bad sets; every subset of U of size r has at least m common
neighbors. By linearity of expectation, we have that the expected size of U is

E[U ] = E[X]− E[Y ] = E[X − Y ] =
dt

nt−1 −
(
n

r

)(m
n

)t
≥ a.

1Convexity arguments are often used in combinatorics to simplify expressions that involve sums of powers. The particular
theorem that we are invoking here is a corollary to Hölder’s Inequality, which states that

n∑
i=1

|xi|p ≥ n1−p

(
n∑

i=1

|xi|
)p

for p > 1 and real x1, . . . , xn. The interested reader is directed to The Cauchy-Schwartz Master Class by J. Michael Steele for
all things convexity [6].
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Since the expected size of U is at least a, by the same probabilistic arguments we saw in the previous section,
G must contain a subset U of at least a vertices. Therefore, we have that G contains a subset U of vertices
that satisfy the constraints of the lemma. �

Let us take a moment to review this result. We have shown that we can find some set of U vertices in G
(that satisfies the constraints of the lemma) as follows:

1. Look at all common neighborhoods A of sets of t vertices in G.

2. For each set A, identify those subsets of A with fewer than m common neighbors, and delete one vertex
from each such subset. Call the resulting set U .

3. We have that the average size of these sets U is

dt

nt−1 −
(
n

r

)(m
n

)t
≥ a.

Since this is the average size, it must be the case that at least one such set U contains at least a
vertices.

With this process and the specific result in mind, let us revisit our university example in greater detail.
Rather than the entire student body, this time we will focus in on the math department.

Suppose we wish the model the relationships between students in the math department of a
university. Suppose that there are 60 students in the math department, and each student on
average knows 40 other students. We might ask: “What is the largest group of students within
which every pair of students has at least 5 mutual friends?” By the lemma of dependent random
choice, we have that for some integer t > 0:

a ≤ dt

nt−1 −
(
n

r

)(m
n

)t
=

40t

60t−1
−
(

60

2

)(
5

60

)t

.

Graphing this expression, we can see that it is maximized for t = 3, and plugging this in gives
a ≤ 16.75. Therefore, we know that there exists a group of 16 students wherein every pair of
students has at least 5 mutual friends.

This is a powerful result. From only general information about a graph (average degree and number of
vertices), we are able to derive some fairly specific information. Furthermore, we are able to achieve this
result in constant time. This means that there is no real limitation on the size of graphs to which we
may apply dependent random choice2. Up until this point, we have only seen contrived applications of this
technique. In the following section, we will examine how dependent random choice can be used to solve
challenging problems in combinatorics and graph theory.

3 Practical Uses

We begin this section with an examination of the problem of extremal numbers (which we introduced in
section 1.2). We then discuss the problem of determining the Ramsey number of the cube, which remains
open.

2Perhaps an interesting (although maybe not especially meaningful) application of this technique is to the Facebook graph.
Since we (or Facebook) know the degree of each vertex (the size of a person’s friend group) and the number of users, we can
readily determine the average degree of a vertex. From this information, dependent random choice allows us to ascertain the
presence and size of mutually connected groups of people. Of course, this technique may fall somewhat short, since the Facebook
graph is likely to be quite sparse.

6



3.1 Turán numbers of bipartite graphs

Recall that the extremal number (also called the Turán number) of a graph H is the maximum number of
edges in a graph G on n vertices, such that G does not contain a copy of H. In section 1.2, we summarized
results from Mantel and Turán that gave the extremal numbers ex(n,K3) and ex(n,Kr), respectively. We

also stated that the extremal number of bipartite graphs with maximum degree r is at most cn2− 1
r for some

constant c. We shall now prove this result. [The following theorem is found in [2], and the proof incorporates
ideas from [2] and [3].]

Theorem 3.1. Let H be a bipartite graph with parts A and B. If all vertices in B have degree at most r,
then ex(n,H) ≤ cn2− 1

r , where c is a constant whose value depends only on H.

Proof: Let G be a graph with n vertices and at least cn2− 1
r edges. We show that (1) G contains a subset

of vertices U , where |U | ≥ |A| and every subset of r vertices in U has at least |A|+ |B| common neighbors,
and (2) that this implies that G must contain at least one copy of H.

1. Since |E(G)| ≥ cn2− 1
r and d = 2|E(G)|/n, we have that

d =
2cn2− 1

r

n
= 2cn1− 1

r .

We let t = r and m = |A|+ |B|. Plugging these values into

dt

nt−1 −
(
n

r

)(m
n

)t
and simplifying gives:(

2cn1− 1
r

)r
nr−1 −

(
n

r

)(
|A|+ |B|

n

)r

= (2c)r −
(
n

r

)(
|A|+ |B|

n

)r

.

Recall that
(
n
k

)
≤
(
en
k

)k
. Applying this inequality to the above expression yields:

(2c)r −
(
n

r

)(
|A|+ |B|

n

)r

≥ (2c)r −
(en

r

)r ( |A|+ |B|
n

)r

= (2c)r −
(
e(|A|+ |B|)

r

)r

.

Note that the term (
e(|A|+ |B|)

r

)r

is simply a constant function of H. Therefore, we can always find a sufficiently large value of c such
that

(2c)r −
(
e(|A|+ |B|)

r

)r

≥ |A|.

By the lemma of dependent random choice, the above expression tells us that G must contain a subset
of vertices U , where |U | ≥ |A| and every subset of r vertices in U has at least |A| + |B| common
neighbors.

2. Let f : A ∪ B → V (G) be an embedding of H = A ∪ B in G. First, arbitrarily embed the vertices of
A in U . (This is possible since in (1), we showed that |U | ≥ |A|.) Let B = {v1, . . . , v|B|}. We embed
the vertices of B sequentially. Suppose vi is an arbitrary vertex of B. We embed vi ∈ B in G. Let
Ni = N(vi) be the vertices of A that are adjacent to vi. By definition, |Ni ≤ r. Therefore, f(Ni)
is a subset of U of size at most r, and so by (1), f(Ni) has a common neighborhood of size at least
|A|+ |B|. Since we have embedded fewer than |A|+ |B| vertices, there must exist some vertex w that
is adjacent to all vertices in f(Ni) and is not yet part of our embedding. We let f(vi) = w. Proceeding
through all vi ∈ B in such a way gives an embedding of H in G. �
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We should note that part (2) of the above proof also proves the following embedding lemma:

Lemma 3.2. Suppose H = A ∪ B is a bipartite graph, where the maximum degree of any vertex in B is r.
If G is a graph containing a subset U of |A| vertices, where all sets of r vertices in U have at least |A|+ |B|
common neighbors, then H is a subgraph of G.

We shall use this lemma in the following section.

3.2 Ramsey number of the cube

Earlier in this paper, as an example of the probabilistic method, we saw a proof of a lower bound on Ramsey
numbers R(k, k). We shall now look at a different problem related to Ramsey numbers: the Ramsey number
of the (hyper)cube.

Recall that the Ramsey number R(H) is the minimum integer n such that every 2-edge-coloring of Kn

(the complete graph on n vertices) contains a monochromatic copy of H. Let Qr be the graph of the
r-dimensional hypercube; in other words, define Qr to be an r-regular graph on 2r vertices, where each
vertex corresponds to a unique binary string of length r, and two vertices are adjacent if and only if their
corresponding binary strings differ by exactly one digit. We prove an upper bound on R(Qr).

The problem of determining R(Qr) has been around for well over 30 years. An upper bound of 2cr
2

was
given by Beck in the early 1980s [7]. Improvements have been made in the subsequent years by a number of
mathematicians, and the bound has been chipped down to a polynomial expression in 2r (i.e. polynomial in
the number of vertices of Qr). We shall use dependent random choice to demonstrate a polynomial upper
bound on R(Q4) of 23r. The conjectured upper bound on R(Qr) is linear in 2r, but this problem remains
open. [The following theorem and proof are due to Fox and Sudakov [2].]

Theorem 3.3. R(Qr) ≤ 23r.

Proof: Let G = Kn be a 2-edge-colored graph on n = 23r vertices. We apply the lemma of dependent
random choice to prove that any monochromatic subgraph of G with at least 1

2

(
n
2

)
edges must contain a

copy of Qr.
Let G′ be the monochromatic subgraph obtained from G by taking all edges of the denser color (i.e. all

edges belonging to the most edge-dense color). Note that G′ must have at least 1
2

(
n
2

)
edges. Furthermore,

note that
1

2

(
n

2

)
=

n(n− 1)

22
≥ n2

27/3
.

Computing the average degree d of G′, we have:

d ≥ 2n2

27/3n
=

n

24/3
= 2−4/3n.

We let t = 3
2r and m = 2r. Plugging these values into

dt

nt−1 −
(
n

r

)(m
n

)t
and simplifying yields

(2−
4
3n)

3
2 r

n
3
2 r−1

−
(
n

r

)(
2r

n

) 3
2 r

= 2−2r −
(
n

r

)(
2r

n

) 3
2 r

.

Note that
(
n
r

)
≤ nr

r! . Plugging this inequality into the above expression, we have:

2−2r −
(
n

r

)(
2r

n

) 3
2 r

≥ 2−2r − nr

r!

(
2r

n

) 3
2 r

= 2−2rn− 2
3
2 r

2

n−
1
2 r

r!
.

Finally, plugging in n = 23r gives:

2−2r23r − 2
3
2 r

2

(23r)−
1
2 r

r!
= 2r − 1

r!
≥ 2r − 1 ≥ 2r−1.
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By the lemma of dependent random choice, the above expression tells us that G′ must contain a set U of
2r−1 vertices, where every subset of U of size r has at least 2r common neighbors.

Note that the graph Qr is bipartite. (Let Qr = A∪B, where vertices in A have associated binary strings
with an even number of 1s, and vertices in B have associated binary strings with an odd number of 1s.
Since adjacent vertices have binary strings that differ by exactly one digit, vertices with the same parity of
1s cannot be adjacent. Therefore, Qr is bipartite with parts A and B of size 2r−1.) Also, note that Qr is
r-regular (i.e. every vertex has degree r). By lemma 3.2 from the previous section, it then follows that Qr

is a subgraph of G′. �

Note: Some progress has been made on the related problem of determining the Ramsey number R(Ks, Qr).
In a 2013 paper by Pontiveros et al. [4], it was shown that R(Ks, Qr) = (s− 1)(2n− 1) + 1. While this does
not answer the question of whether the upper bound on R(Qr) is linear in 2r, it does hint that improvements
can likely be made.

4 Concluding Remarks

In this paper, we have introduced the idea of probabilistic methods in graph theory and combinatorics,
presented the specific probabilistic tool of dependent random choice, both abstractly and formally, and
looked at two applications of this technique (Turán numbers of bipartite graphs and Ramsey numbers of
the hypercube). It should come as no surprise that this is just the tip of the iceberg. A paper by Fox and
Sudakov [2] (upon which this paper is based) lists a number of other applications of the method of dependent
random choice. These include:

• Embedding a 1-subdivision of the complete graph: A 1-subdivision of a graph G is a graph G′ resulting
from replacing some edges of G with paths of length 3. This problem asks whether any graph with
“enough” edges contains a 1-subdivision of the complete graph.

• Ramsey-Turán problem for K4-free graphs: The Ramsey-Turán number RT(n,H, f(n)) is the maxi-
mum number of edges in an n-vertex graph that does not contain the graph H as a subgraph, nor has
an independent set of size f(n). This problem addresses the specific question of RT(n,K4, f(n)), and
proves a result for very small f(n).

The applications of dependent random choice and other probabilistic methods to graph-theoretical prob-
lems are many and varied. In this paper, we have caught a glimpse of the strength of these techniques. For
a more detailed exploration of these ideas, we strongly recommend the survey paper “Dependent Random
Choice” by Fox and Sudakov [2].
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